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F1(n) = 2n Fk+1(n) = Fk ￮…￮ Fk(1)

composed n times

F2(n) = 2n F3(n) = Tower(n)

Ack(n) = Fω(n) = Fn(n)
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finite doubly-exponential reachability set



Hard examples



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r(1,0,0,-1)



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) 

(1,0,0,-1)



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1) 

(1,0,0,-1)



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1) 

(1,0,0,-1)

…



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1) 

(1,0,0,-1)

… p(Tower(n),0,1,0) 



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1) 

finite tower-size reachability set

(1,0,0,-1)

… p(Tower(n),0,1,0) 



Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1) 

finite tower-size reachability set

(1,0,0,-1)

… p(Tower(n),0,1,0) 

finite Fd-size reachability set



Decidability idea



Decidability idea

Question: does p(s)        q(t)?



Decidability idea

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!



Decidability idea

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!

Linear equations (in NP)



Decidability idea

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!



Decidability idea

Assume:

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!



Decidability idea

Assume: p(s)        p(s+Δ)  

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!



Decidability idea

Assume: p(s)        p(s+Δ)  q(t+Δ)        q(t)  

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!



Decidability idea

Assume: p(s)        p(s+Δ)  q(t+Δ)        q(t)  

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!

with Δ ≥ 1



Decidability idea

Assume: p(s)        p(s+Δ)  q(t+Δ)        q(t)  

Then:

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!

with Δ ≥ 1



Decidability idea

Assume: p(s)        p(s+Δ)  q(t+Δ)        q(t)  

Then:

Question: does p(s)        q(t)?

Idea: reachability in ℤ is easy!

p(s)        q(t)ℤ

with Δ ≥ 1



Decidability idea

Assume: p(s)        p(s+Δ)  q(t+Δ)        q(t)  

Then:

Question: does p(s)        q(t)?

implies

Idea: reachability in ℤ is easy!

p(s)        q(t)ℤ

with Δ ≥ 1



Decidability idea

Assume: p(s)        p(s+Δ)  q(t+Δ)        q(t)  

Then:

Question: does p(s)        q(t)?

p(s)        q(t)implies

Idea: reachability in ℤ is easy!

p(s)        q(t)ℤ

with Δ ≥ 1



Decidability idea



Decidability idea
Then:



Decidability idea
Then: p(s)        q(t)ℤ



Decidability idea
Then: impliesp(s)        q(t)ℤ



Decidability idea
Then: p(s)        q(t)impliesp(s)        q(t)ℤ



Decidability idea
Then: p(s)        q(t)impliesp(s)        q(t)ℤ



Decidability idea
Then: p(s)        q(t)impliesp(s)        q(t)ℤ



Decidability idea
Then: p(s)        q(t)impliesp(s)        q(t)ℤ



Decidability idea
Then: p(s)        q(t)impliesp(s)        q(t)ℤ

+nΔ



Decidability idea
Then: p(s)        q(t)impliesp(s)        q(t)ℤ

+nΔ



Decidability idea
Then: p(s)        q(t)impliesp(s)        q(t)ℤ

+nΔ

-nΔ



Decidability idea



Decidability idea
Assume:



Decidability idea
Assume: p(s)        p(s+Δ1)  



Decidability idea
Assume: p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  



Decidability idea
Assume: p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Then:



Decidability idea
Assume: p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Then:

p(s)        q(t)ℤ



Decidability idea
Assume: p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Then:

p(s)        q(t)ℤ by runs using each transition many times



Decidability idea
Assume: p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Then:

implies

p(s)        q(t)ℤ by runs using each transition many times



Decidability idea
Assume: p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Then:

p(s)        q(t)implies

p(s)        q(t)ℤ by runs using each transition many times



Decidability idea
Assume: p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Then:

p(s)        q(t)implies

p(s)        q(t)ℤ by runs using each transition many times

Why?



Decidability idea
Assume: p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Then:

p(s)        q(t)implies

p(s)        q(t)ℤ by runs using each transition many times

Why? p(s)         p(s+Δ2-Δ1)ℤ



Decidability idea



Decidability idea
p(s)        p(s+Δ1)  



Decidability idea
p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  



Decidability idea
p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  p(s)         p(s+Δ2-Δ1)ℤ



Decidability idea
p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  p(s)         p(s+Δ2-Δ1)ℤ



Decidability idea
p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  p(s)         p(s+Δ2-Δ1)ℤ



Decidability idea

+nΔ1

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  p(s)         p(s+Δ2-Δ1)ℤ



Decidability idea

+nΔ1

+n(Δ2-Δ1)

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  p(s)         p(s+Δ2-Δ1)ℤ



Decidability idea

+nΔ1

+n(Δ2-Δ1)

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  p(s)         p(s+Δ2-Δ1)ℤ



Decidability idea

+nΔ1

-nΔ2

+n(Δ2-Δ1)

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  p(s)         p(s+Δ2-Δ1)ℤ



Algorithm



Algorithm
Check whether:



Algorithm

p(s)        p(s+Δ1)  

Check whether:



Algorithm

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Check whether:



Algorithm

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Check whether:

p(s)        q(t)ℤ by runs using each transition many times



Algorithm

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Check whether:

p(s)        q(t)ℤ by runs using each transition many times

If yes then return YES



Algorithm

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Check whether:

p(s)        q(t)ℤ by runs using each transition many times

If yes then return YES

If no then simplify



Algorithm

p(s)        p(s+Δ1)  q(t+Δ2)        q(t)  

Check whether:

p(s)        q(t)ℤ by runs using each transition many times

If yes then return YES

If no then simplify

Involved!
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Ackermann-hardness

The Reachability Problem for (3k+2)-VASSes is 𝔽k-hard.
Theorem

Sławomir Lasota

Cz., Łukasz Orlikowski: 6k

Jerome Leroux (currently): 2k+4
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Big counters

Given:

The following problem is 𝔽k-complete (k ≥ 3)

a two-counter automaton A
with zero-tests, number n

Question: does A have an Fk(n)-bounded run?



Multiplication triples



Multiplication triples

If for each n there is a d-VASS with 
transitions of size ≤ n such that

Lemma



Multiplication triples

If for each n there is a d-VASS with 
transitions of size ≤ n such that

Lemma

arbitrary big m guessed
some counters reach 0



Multiplication triples

If for each n there is a d-VASS with 
transitions of size ≤ n such that

Lemma

arbitrary big m guessed
some counters reach 0 (Fk(n), m,  Fk(n) m)



Multiplication triples

If for each n there is a d-VASS with 
transitions of size ≤ n such that

Lemma

arbitrary big m guessed
some counters reach 0 (Fk(n), m,  Fk(n) m)

then reachability for d-VASSes is Fk-hard



Multiplication triples

If for each n there is a d-VASS with 
transitions of size ≤ n such that

Lemma

arbitrary big m guessed
some counters reach 0 (Fk(n), m,  Fk(n) m)

then reachability for d-VASSes is Fk-hard

Proof: simulate Fk(n)-bounded run
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Triples
Triples (B, m, Bm) allow zero-testing

for m/2 zero-tests on B-bounded counters

Goal: compute (Fk(n), m, Fk(n) m) 

For k = 1 easy: (2n, 0, 0) + m(0, 1, 2n)
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Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

zero-test(x’):

loop {inc(x’), dec(x), dec(z)}

y := y-2

At the end check if z = 0

loop {dec(x’), inc(x), dec(z)}y dec by 2

z dec by ≤2B

keep x+x’ = B
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Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

y := y-2

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)

transfer(x1, x2, z)
transfer(x2, x3, z)

transfer(xk-1, xk, z)
…

each token moved
at most twice

z dec by ≤2B
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Amplifiers
Lemma
Fk-amplifiers of dimension 3k+2 exist.

Proof idea: induction on k

To get Fk-amplifier apply n times Fk-1-amplifier
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General strategy

Goal: find algorithm computing (Fk(n), m, Fk(n) m)

from algorithm computing (Fk-1(n), m, Fk-1(n) m)

Fk(n) = Fk-1 ￮…￮ Fk-1(1) 

Idea: start from triple (1, m, m)

n times apply Fk-1 to 1  
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• reachability for 3-VASSes (Tower? PSpace?)

• 𝔽d-hardness in dimension d+C (in 𝔽d for d-4)?

• reachability for pushdown VASSes (decidable?)

• hyper-Ackermann-hardness for pushdown VASSes?

• low dimensions

Open problems

Thank you!


