The Reachability Problem for Vector Addition Systems

Wojciech Czerwiński

Aalborg 2022

• basic notions and the problem

- basic notions and the problem
- short history

- basic notions and the problem
- short history
- interesting examples

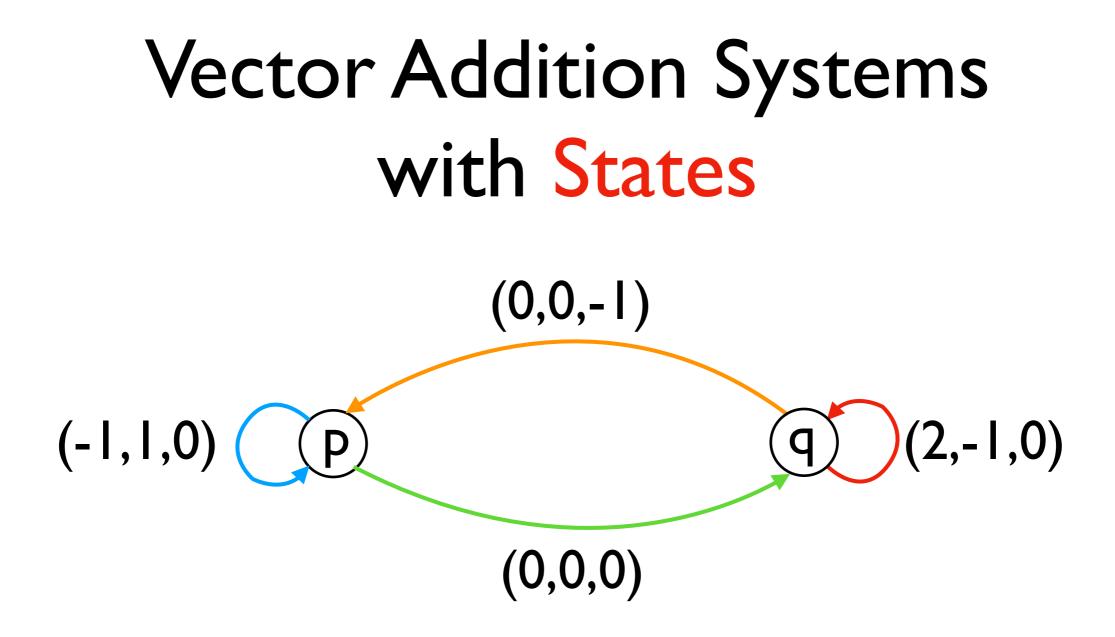
- basic notions and the problem
- short history
- interesting examples
- decidability (idea)

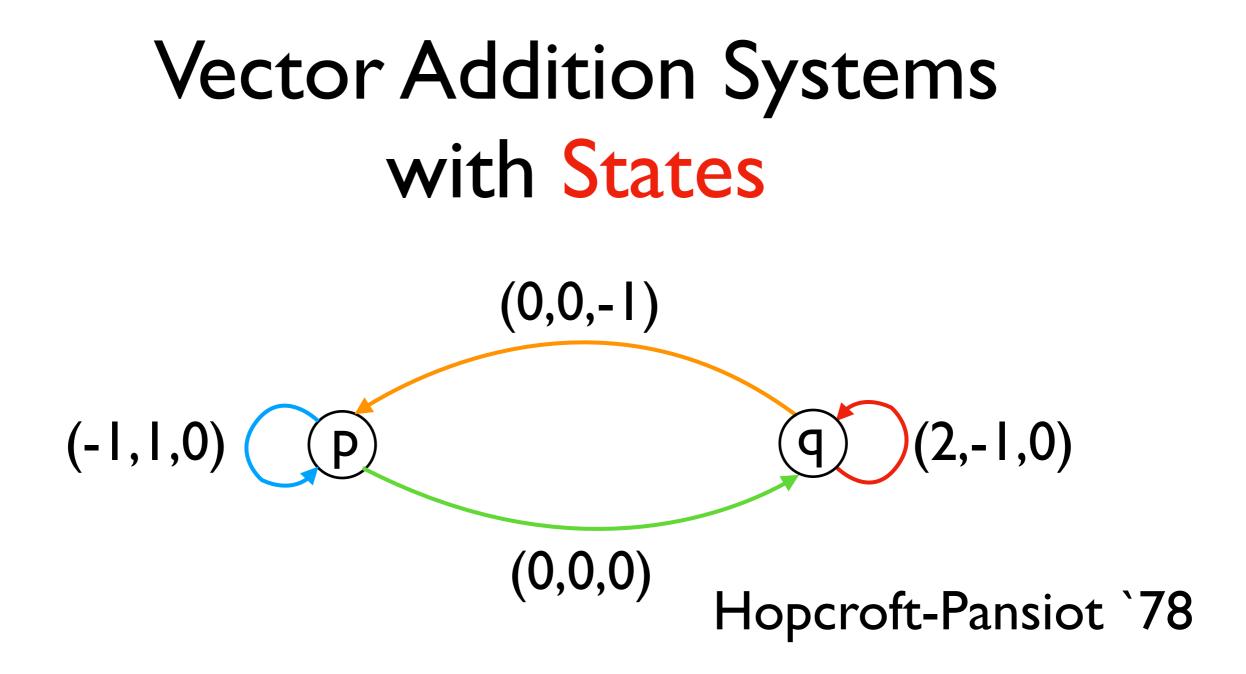
- basic notions and the problem
- short history
- interesting examples
- decidability (idea)
- Ackermann-hardness

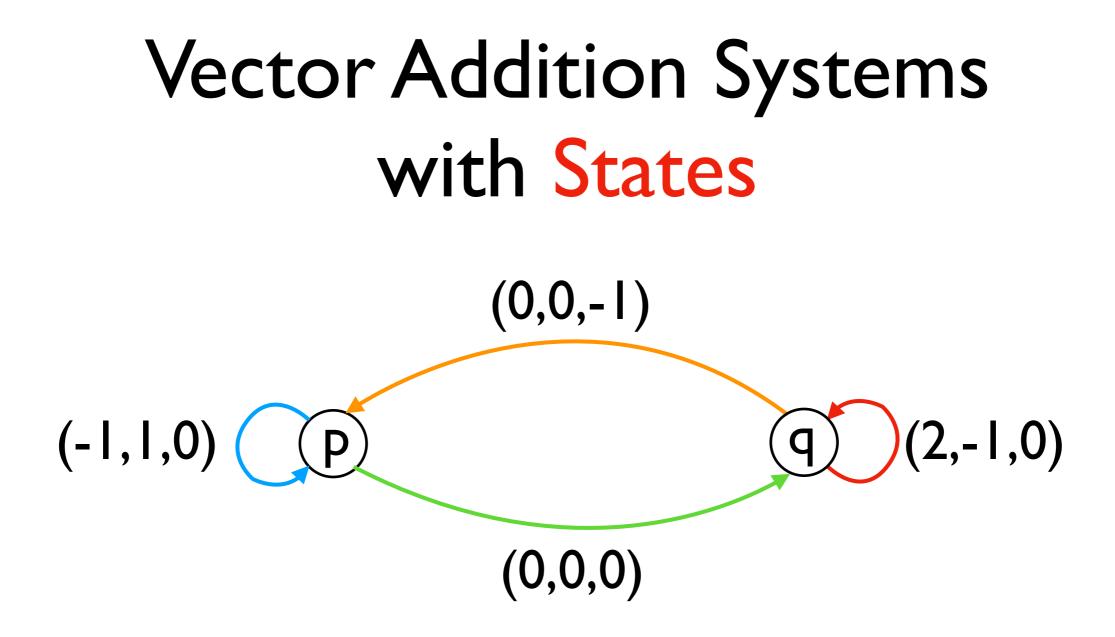
- basic notions and the problem
- short history
- interesting examples
- decidability (idea)
- Ackermann-hardness
- open problems

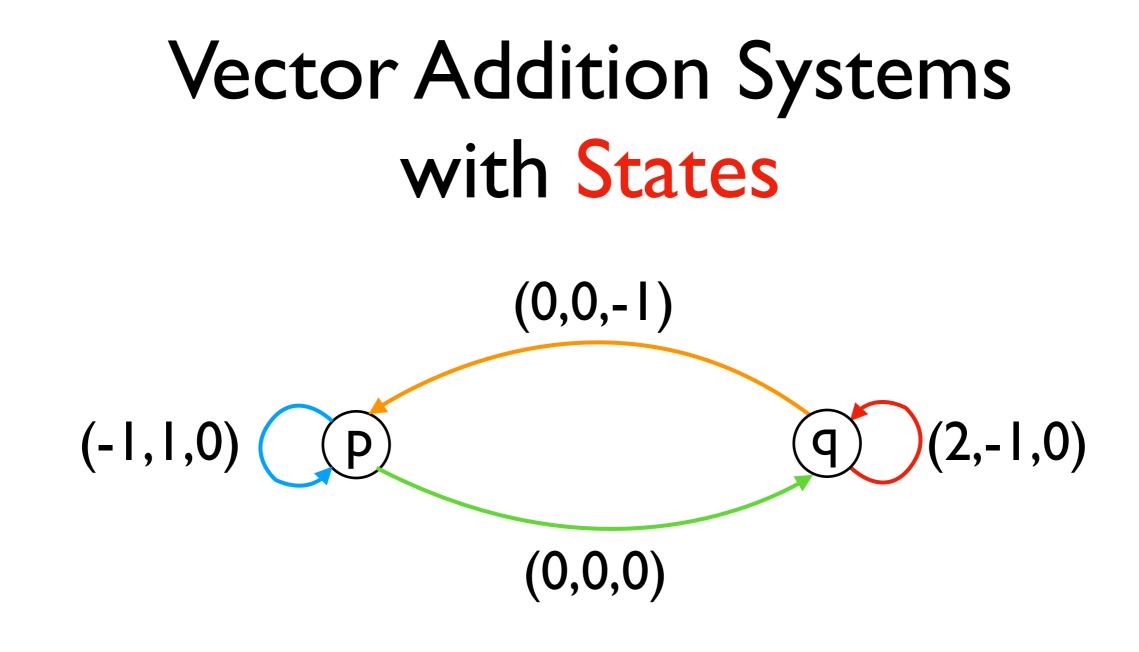
- basic notions and the problem
- short history
- interesting examples
- decidability (idea)
- Ackermann-hardness
- open problems
- goal: intuitions

Vector Addition Systems with States

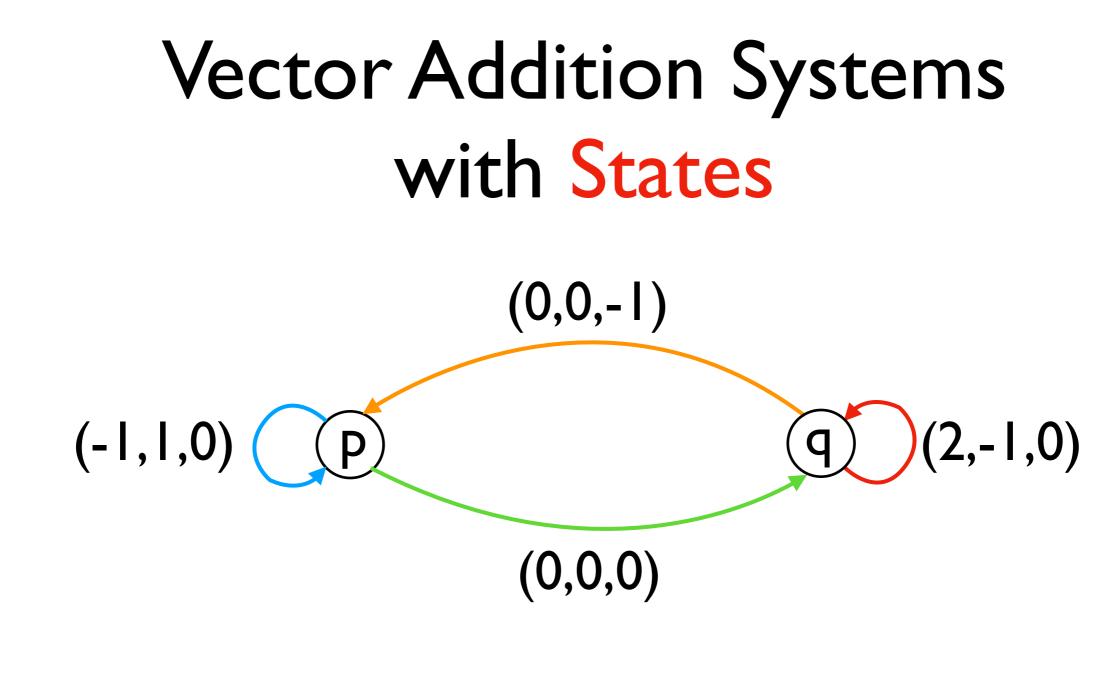




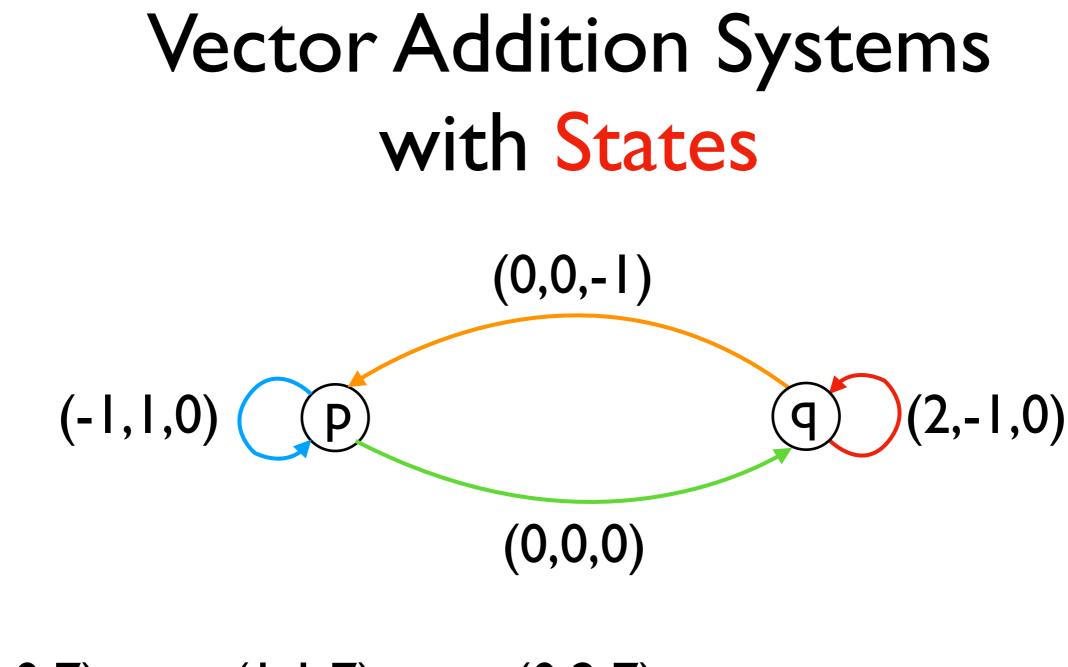




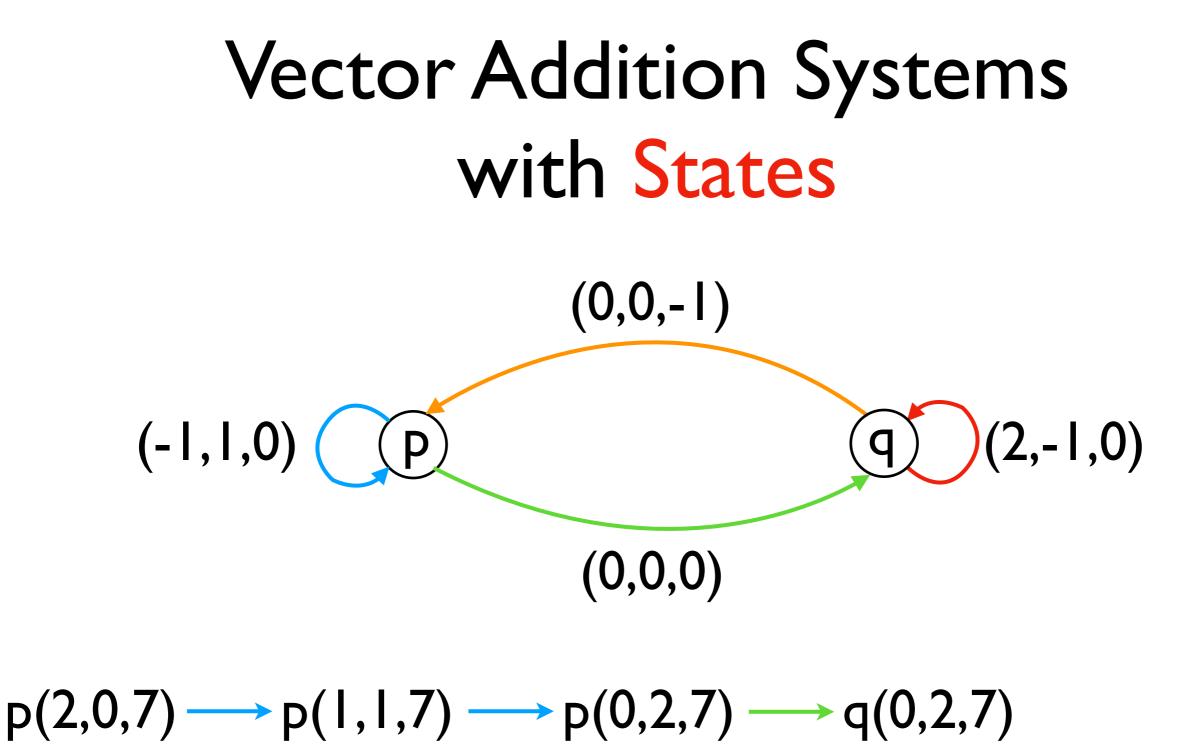
p(2,0,7)

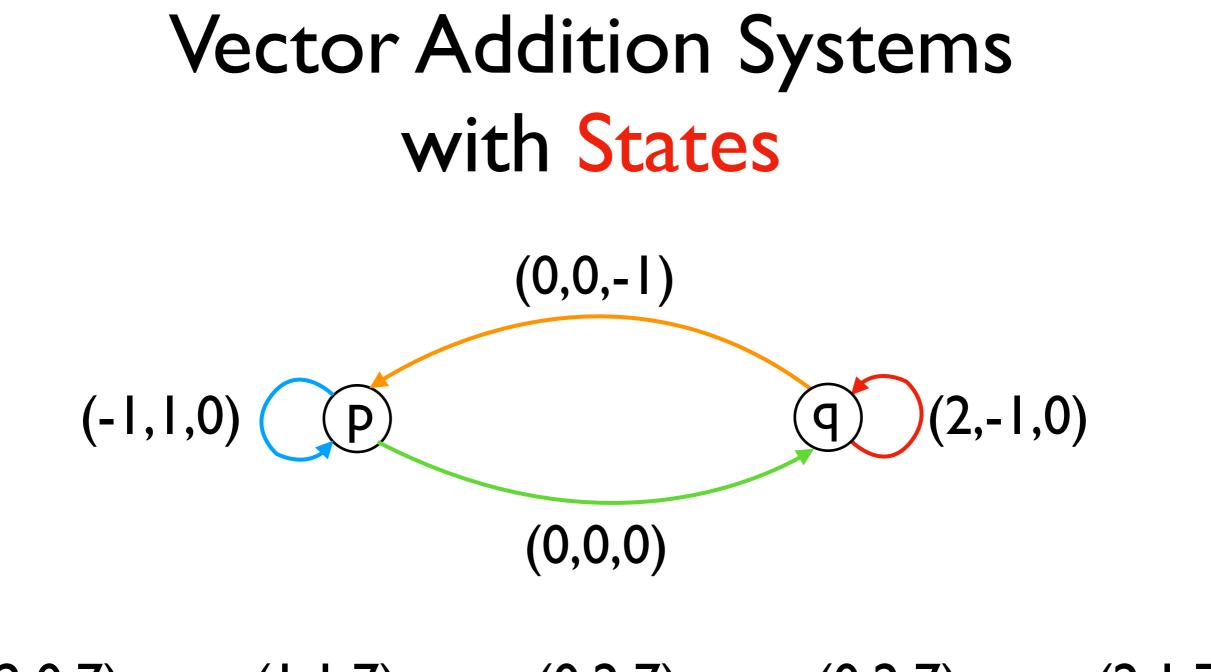


 $p(2,0,7) \longrightarrow p(1,1,7)$

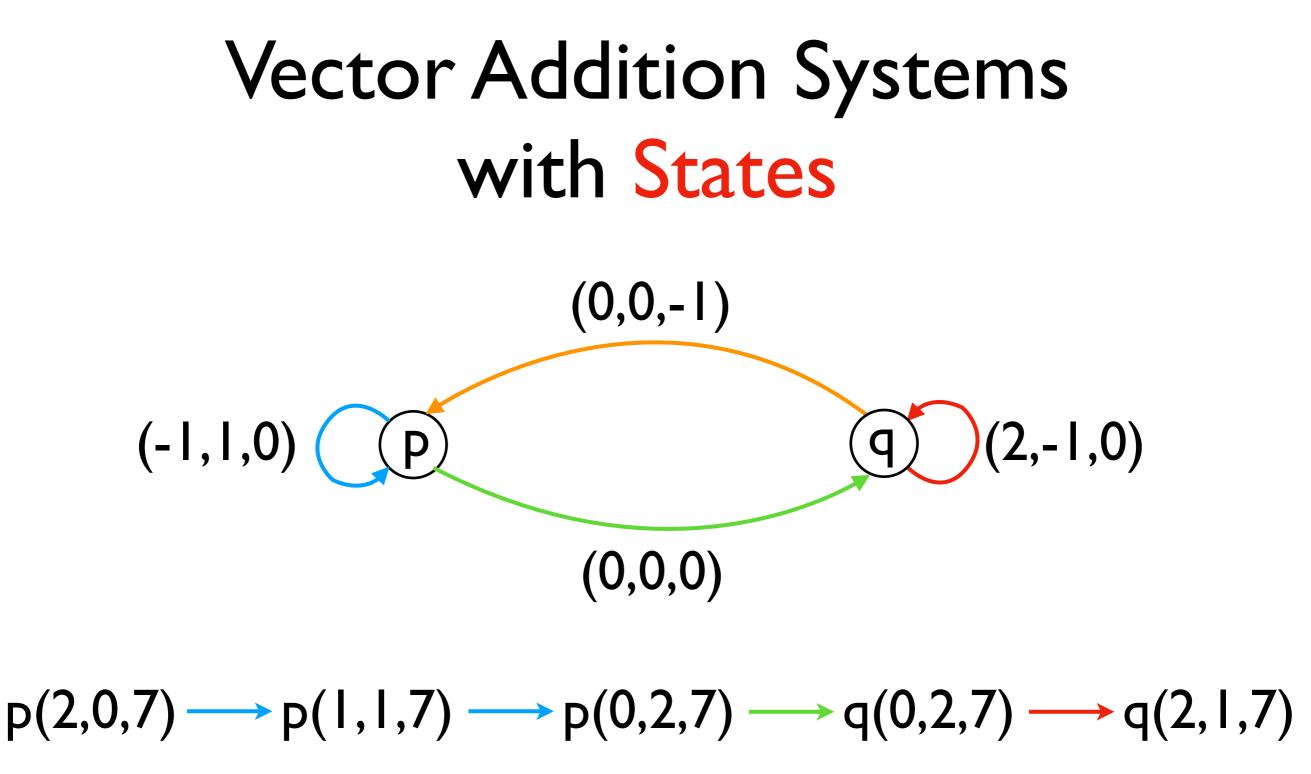


 $p(2,0,7) \longrightarrow p(1,1,7) \longrightarrow p(0,2,7)$

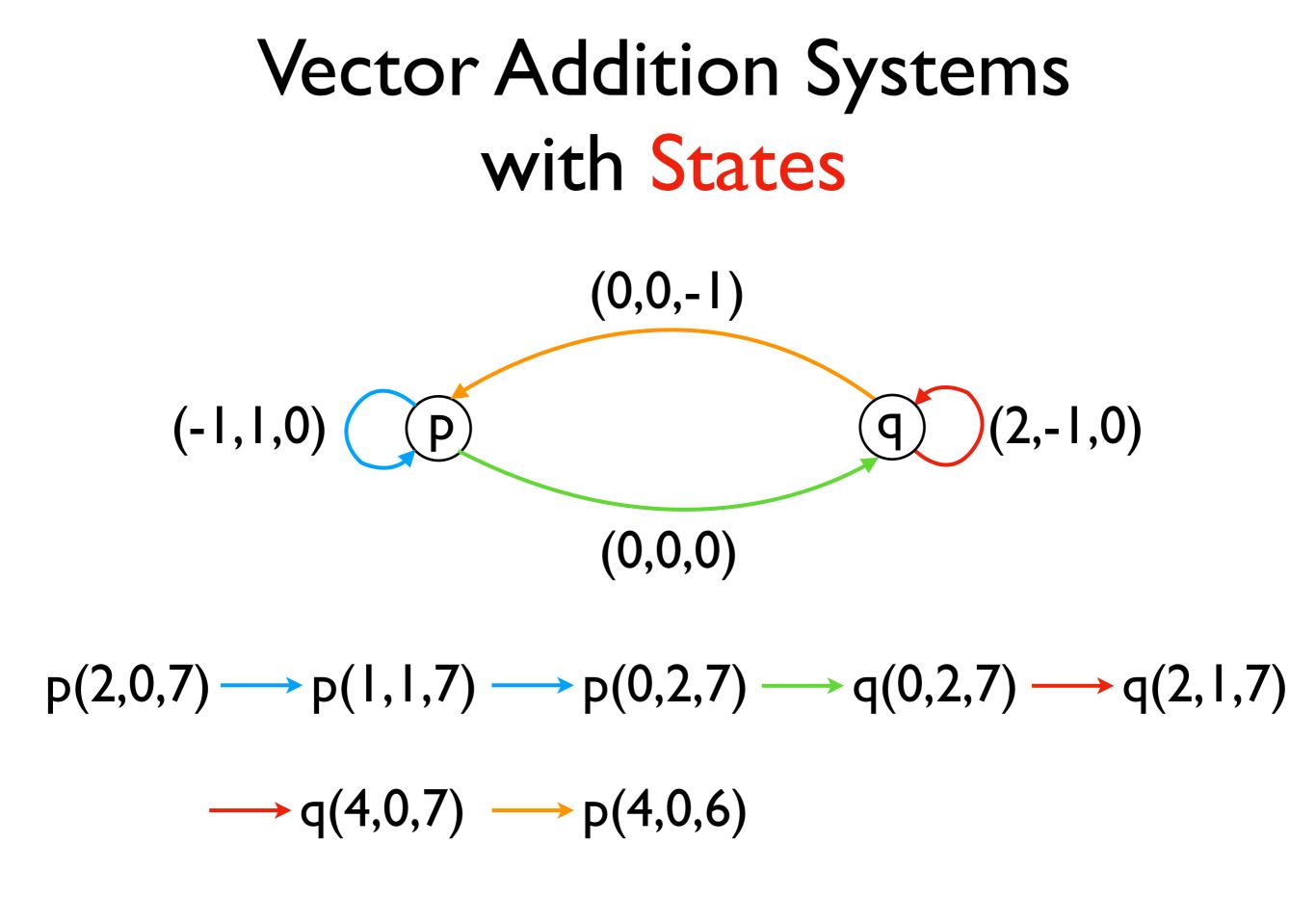


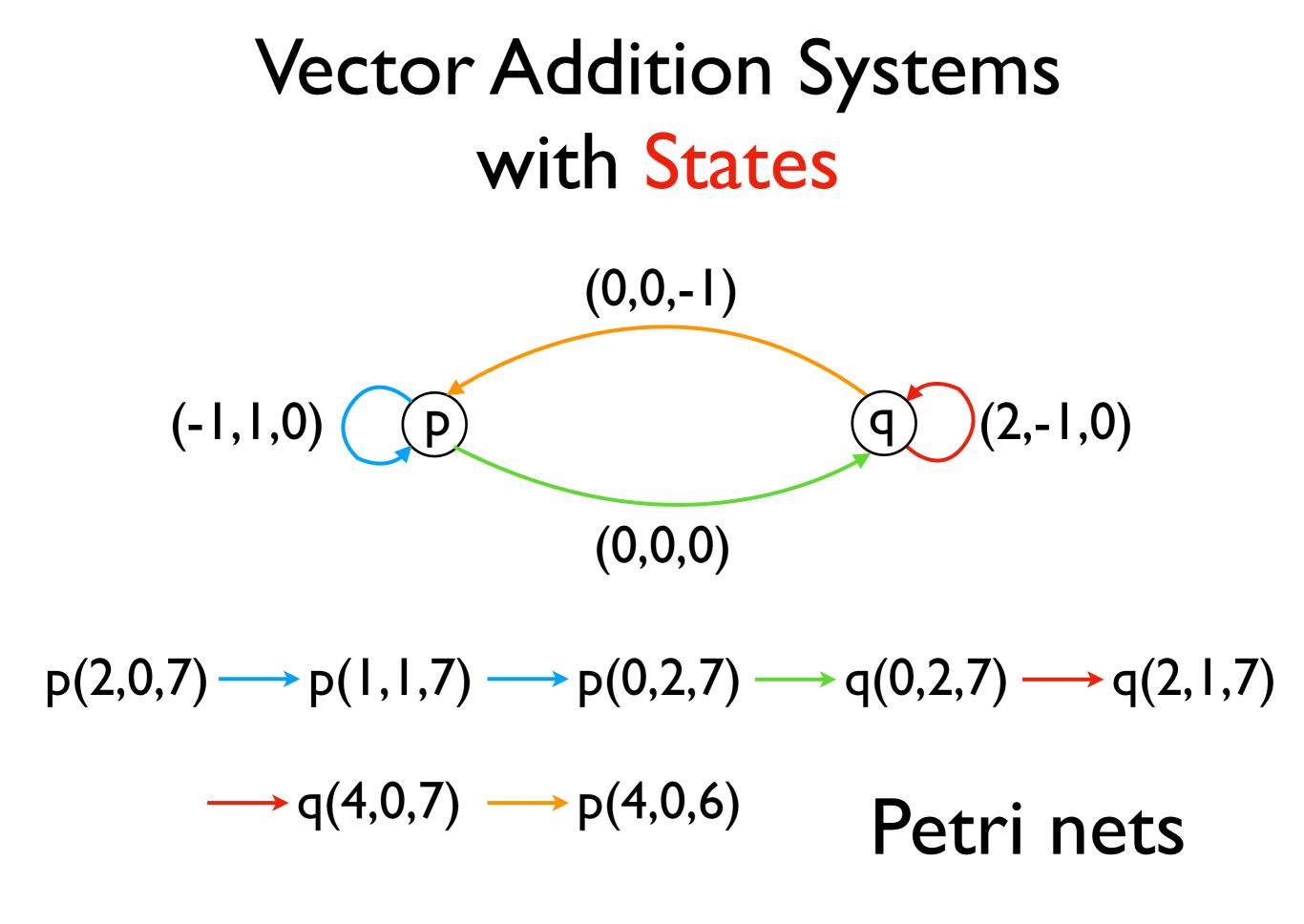


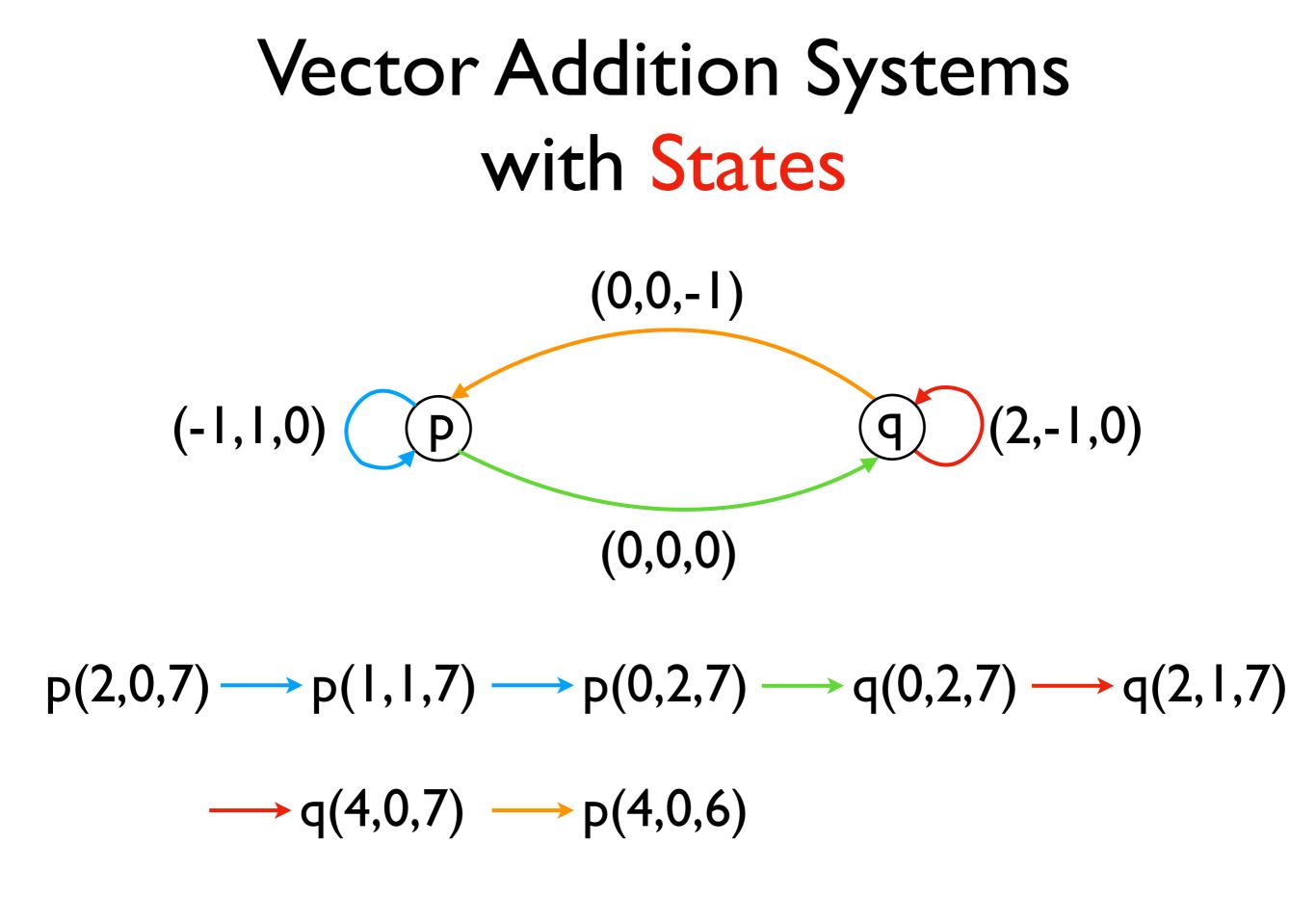
 $p(2,0,7) \longrightarrow p(1,1,7) \longrightarrow p(0,2,7) \longrightarrow q(0,2,7) \longrightarrow q(2,1,7)$



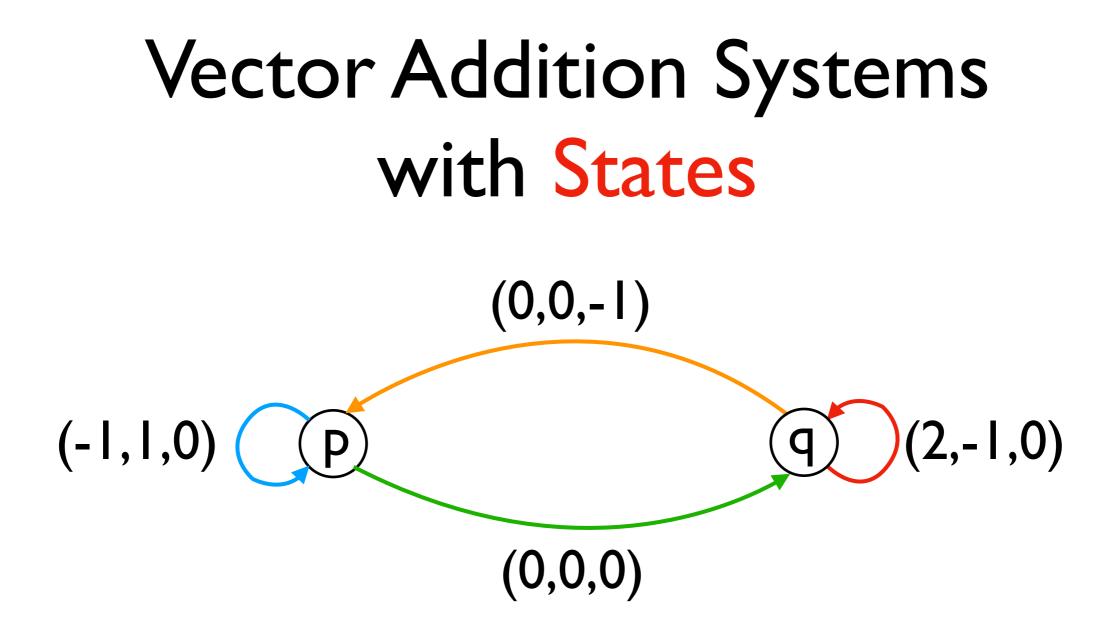
→q(4,0,7)

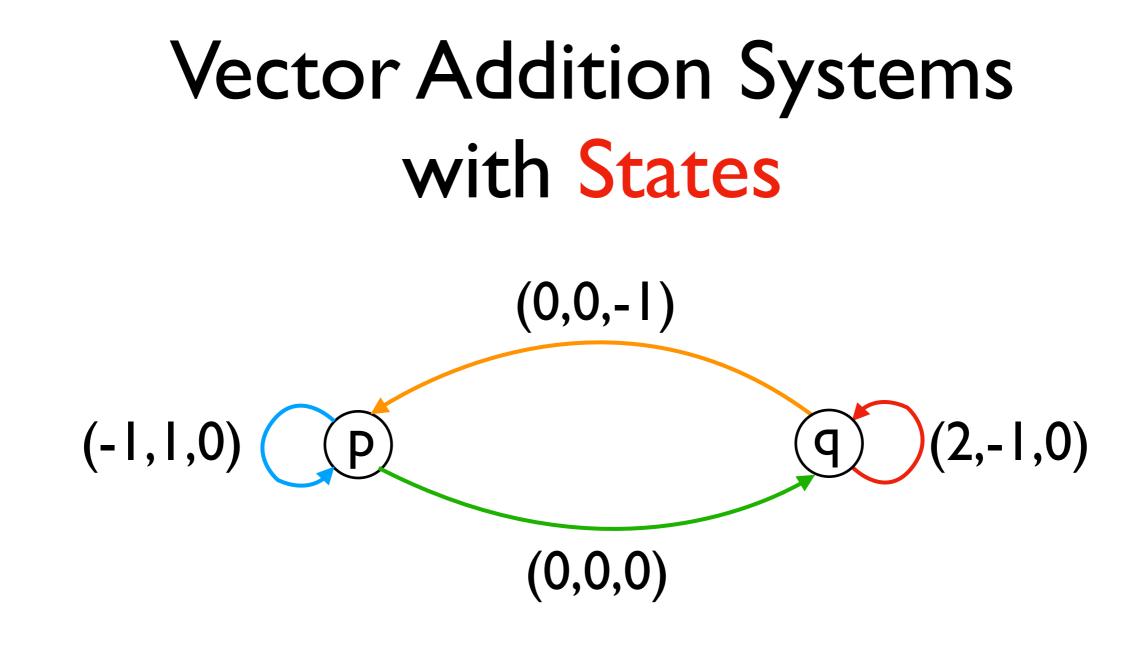




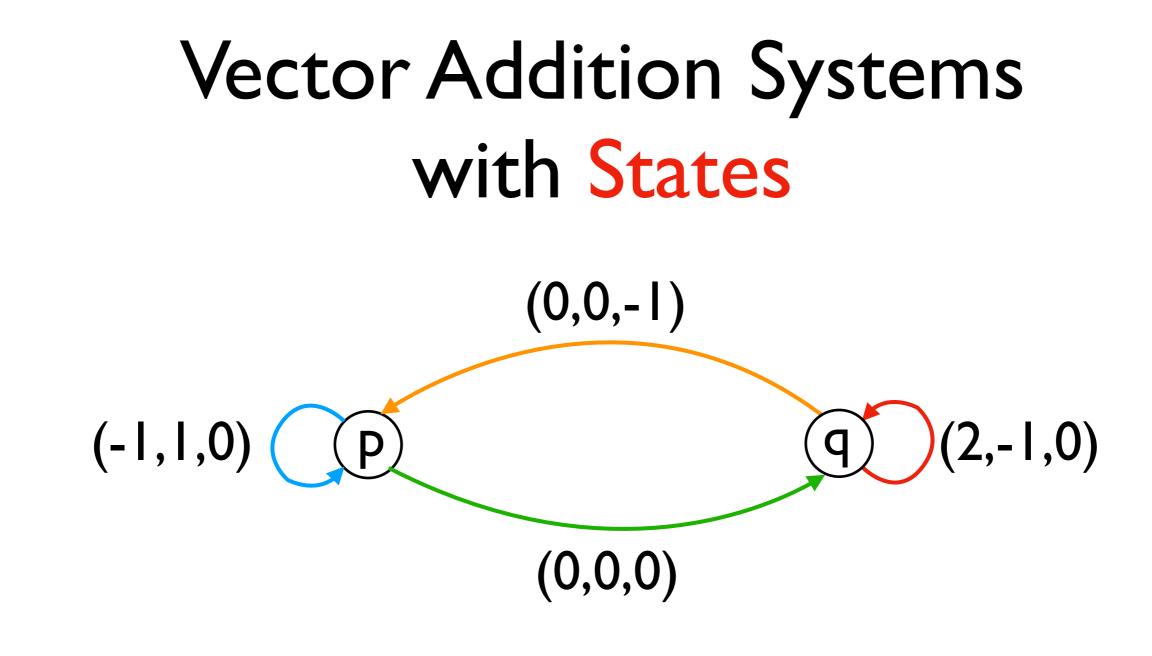


Vector Addition Systems with States

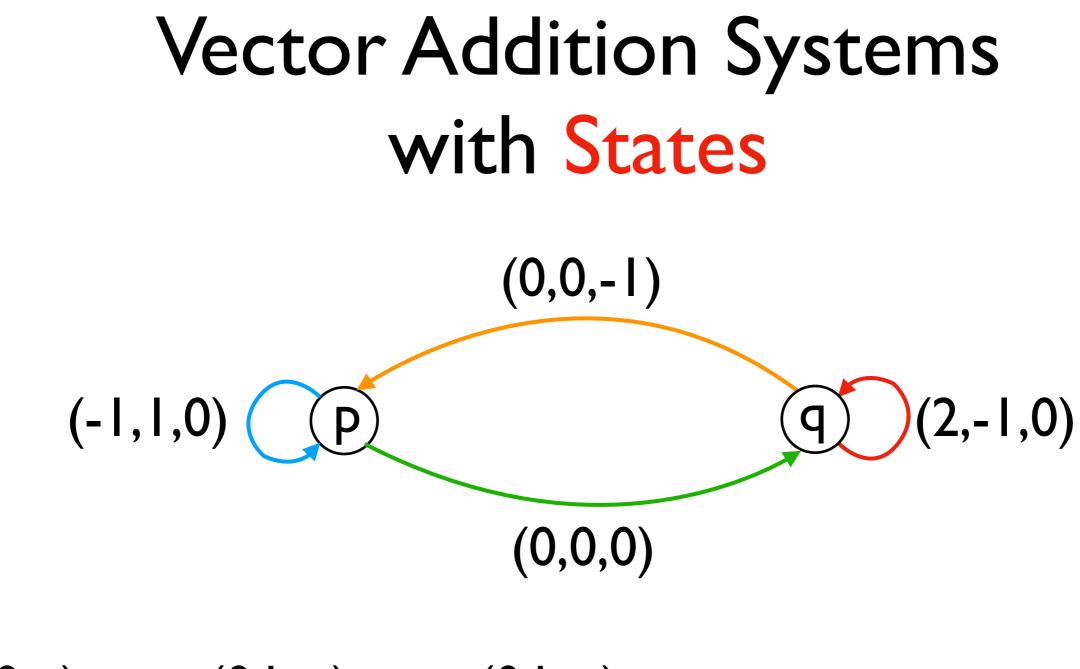




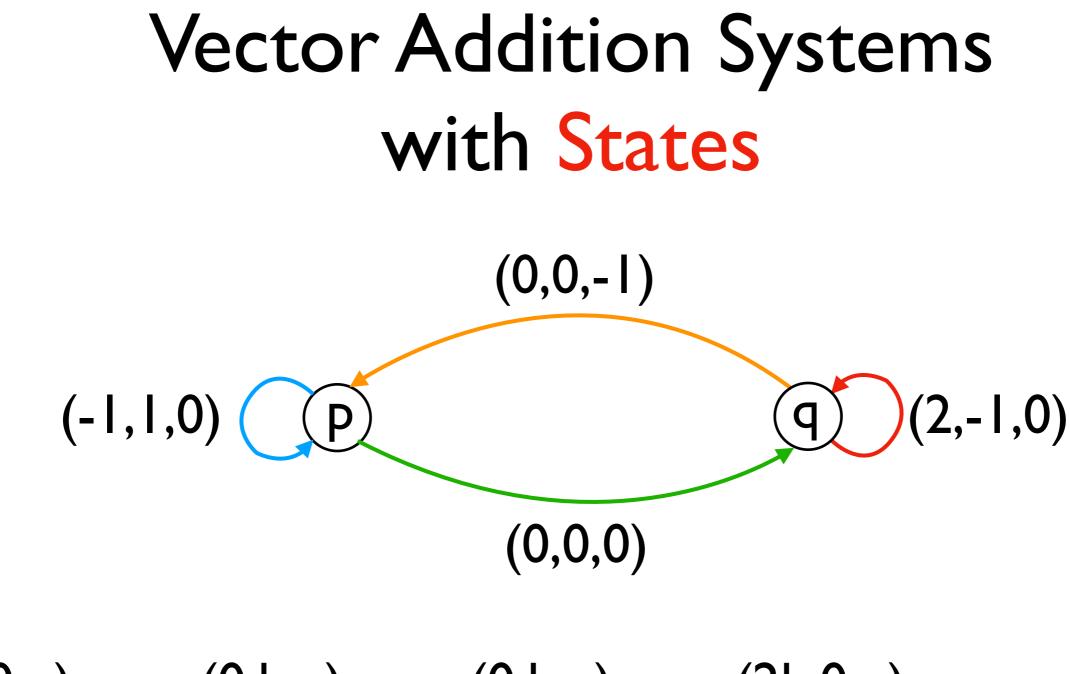
p(k,0,n)



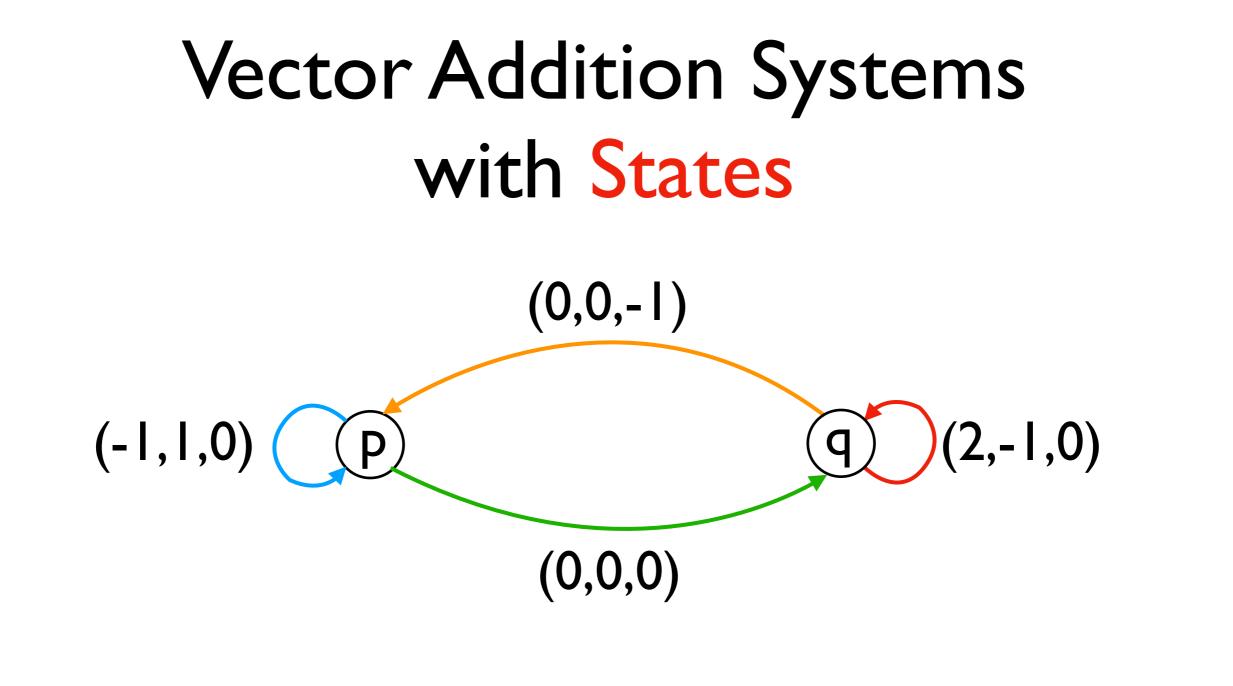
 $p(k,0,n) \longrightarrow p(0,k,n)$

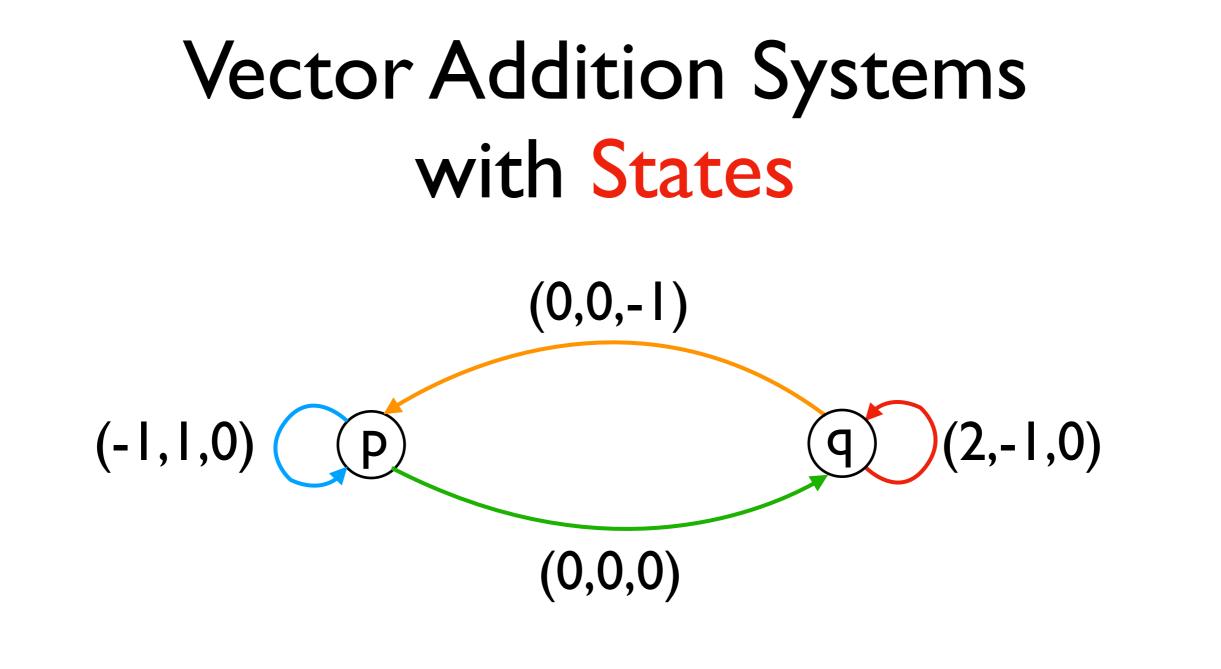


 $p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n)$

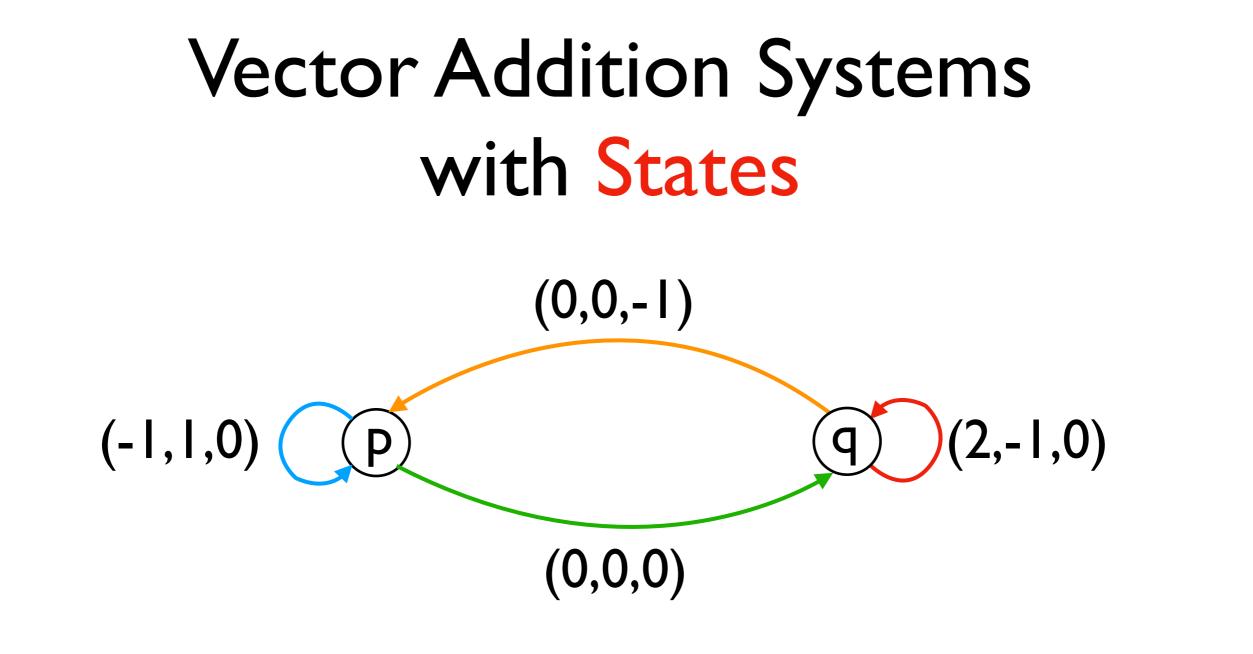


 $p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n)$

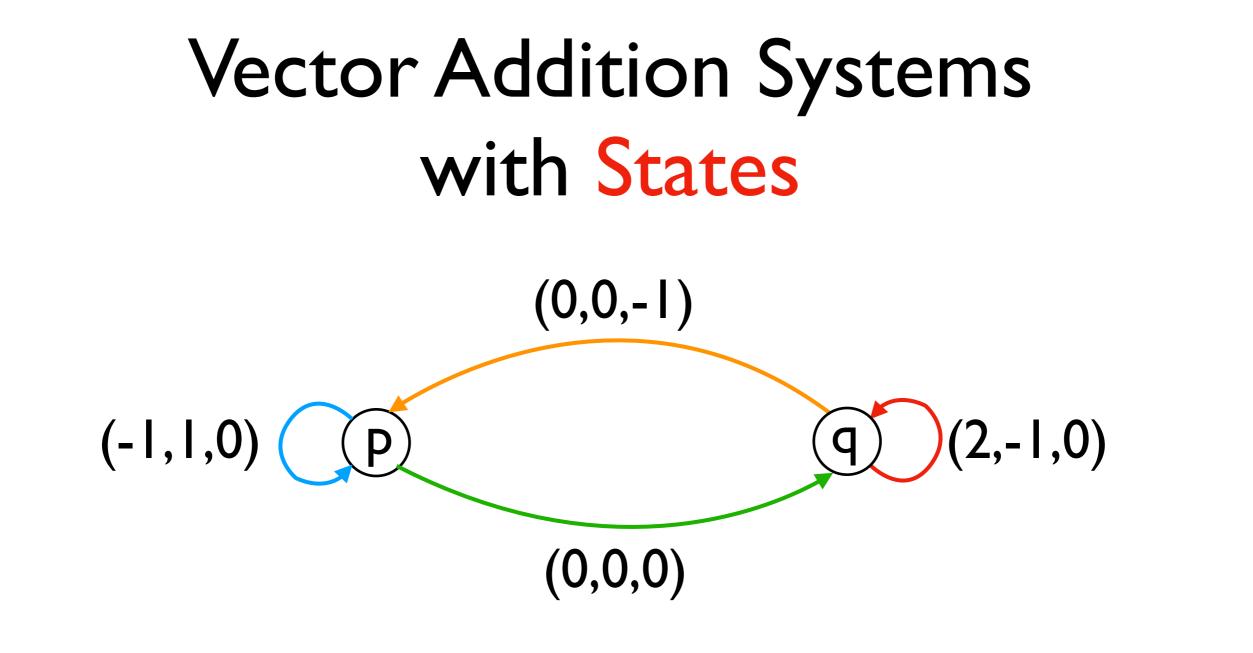




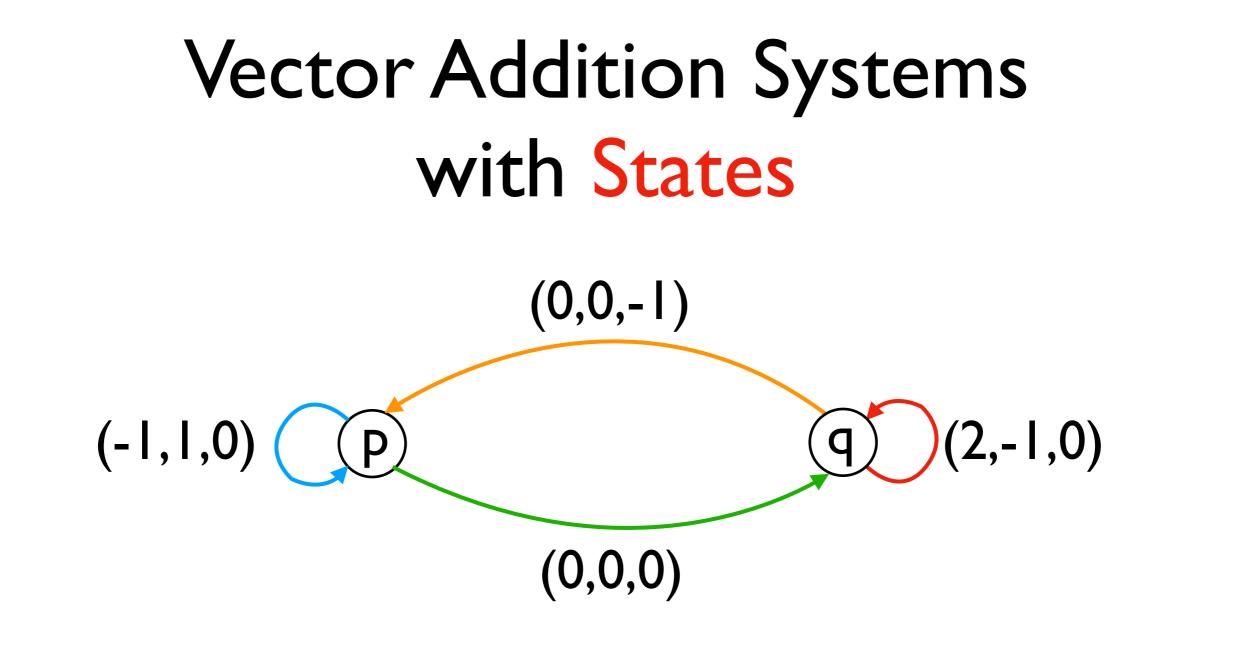
p(1,0,n)



$$p(1,0,n) \longrightarrow p(2,0,n-1)$$



$$p(1,0,n) \longrightarrow p(2,0,n-1) \dots$$



$$p(1,0,n) \longrightarrow p(2,0,n-1) \longrightarrow p(2^n,0,0)$$

Reachability problem

Reachability problem

Given: a VASS, two its configurations s and t

Reachability problem

Given: a VASS, two its configurations s and t

Question: is there a run from s to t?

Reachability problem

Given: a VASS, two its configurations s and t

Question: is there a run from s to t?

Question: is there a run from s above t?

Reachability problem

Given: a VASS, two its configurations s and t

Question: is there a run from s to t?

Question: is there a run from s above t?

coverability problem

Lipton `76: ExpSpace-hardness of coverability

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

doubly-exponential length paths

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Mayr `81: decidability of reachability

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Mayr `81: decidability of reachability

Kosaraju `82, Lambert `92: simplifications

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Mayr `81: decidability of reachability

Kosaraju `82, Lambert `92: simplifications

Blondin at el. `I5: reachability PSpace-complete for 2-VASSes

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Mayr `81: decidability of reachability

Kosaraju `82, Lambert `92: simplifications

Blondin at el. `I 5: reachability PSpace-complete for 2-VASSes

exponential length paths

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Mayr `81: decidability of reachability

Kosaraju `82, Lambert `92: simplifications

Blondin at el. `I5: reachability PSpace-complete for 2-VASSes

Leroux, Schmitz `15: cubic-Ackermann

Leroux, Schmitz `I5: cubic-Ackermann

Leroux, Schmitz `19:Ackermann

Leroux, Schmitz `I5: cubic-Ackermann

Leroux, Schmitz `19:Ackermann

Conjecture: reachability in ExpSpace

Leroux, Schmitz `I5: cubic-Ackermann

Leroux, Schmitz `19:Ackermann

Conjecture: reachability in ExpSpace

Cz., Lasota, Lazic, Leroux, Mazowiecki `19: Tower-hardness

Leroux, Schmitz `I5: cubic-Ackermann

Leroux, Schmitz `19:Ackermann

Conjecture: reachability in ExpSpace

Cz., Lasota, Lazic, Leroux, Mazowiecki `19: Tower-hardness

Leroux & Cz., Orlikowski`21: Ackermann-hardness

$$F_{1}(n) = 2n$$

 $F_{l}(n) = 2n \qquad F_{k+l}(n) = F_{k \circ ... \circ} F_{k}(l)$

 $F_1(n) = 2n$

$F_{k+1}(n) = F_k \circ \ldots \circ F_k(1)$

composed n times

 $F_1(n) = 2n$

$$F_{k+1}(n) = F_{k \circ \ldots \circ} F_{k}(1)$$

composed n times

 $F_2(n) = 2^n$

 $F_{I}(n) = 2n$

$$F_{k+1}(n) = F_{k \circ \ldots \circ} F_{k}(1)$$

composed n times

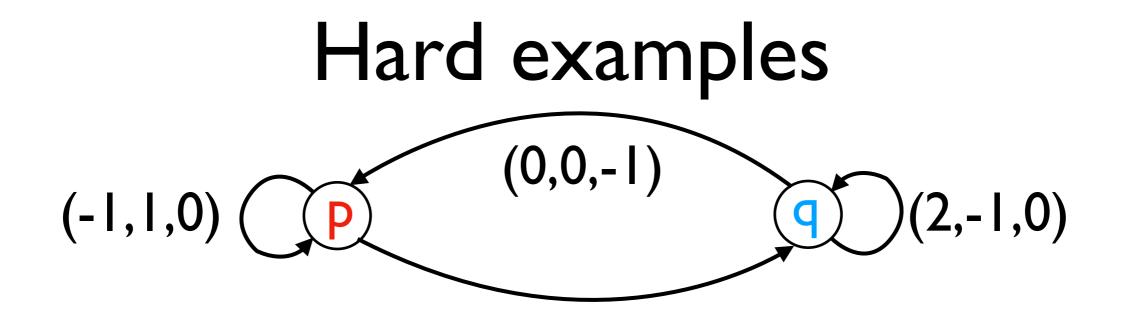
$$F_2(n) = 2^n$$
 $F_3(n) = Tower(n)$

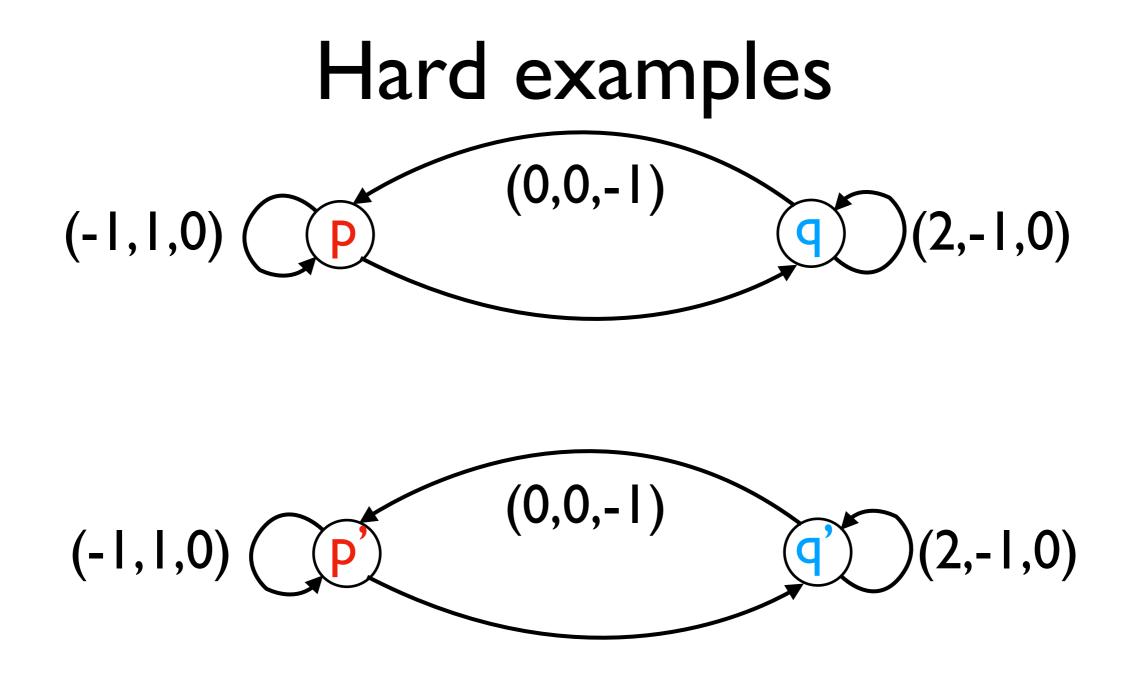
 $F_{l}(n) = 2n \qquad F_{k+l}(n) = F_{k \circ ... \circ} F_{k}(l)$

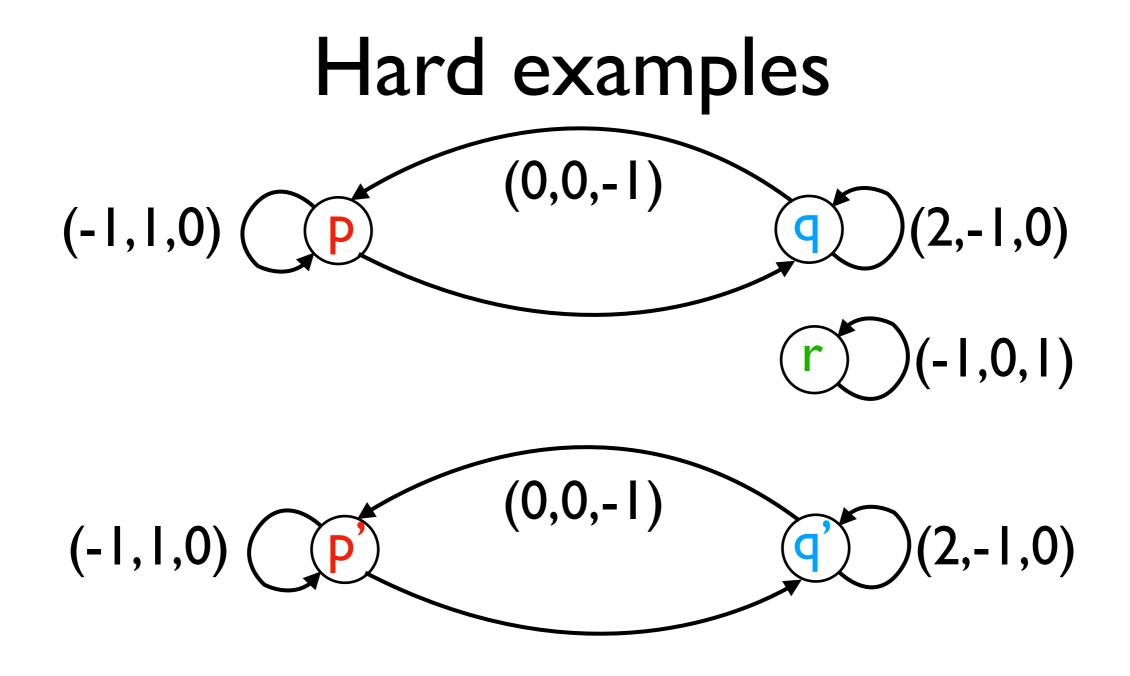
composed n times

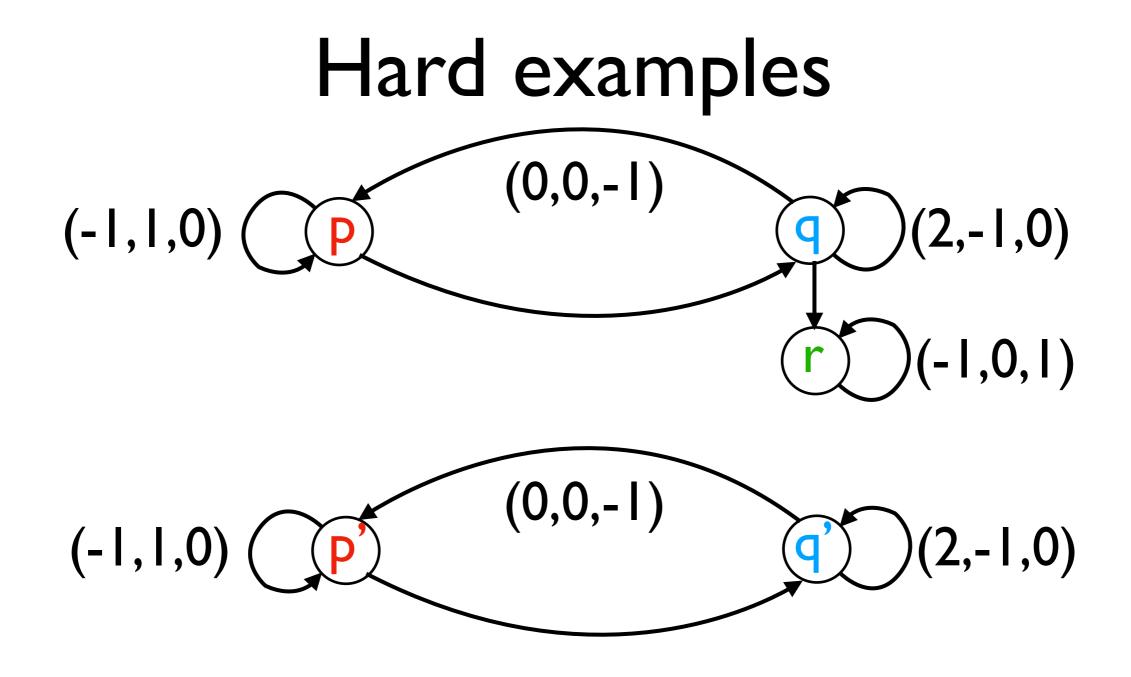
 $F_{2}(n) = 2^{n} \qquad F_{3}(n) = \text{Tower}(n)$ $Ack(n) = F_{\omega}(n) = F_{n}(n)$

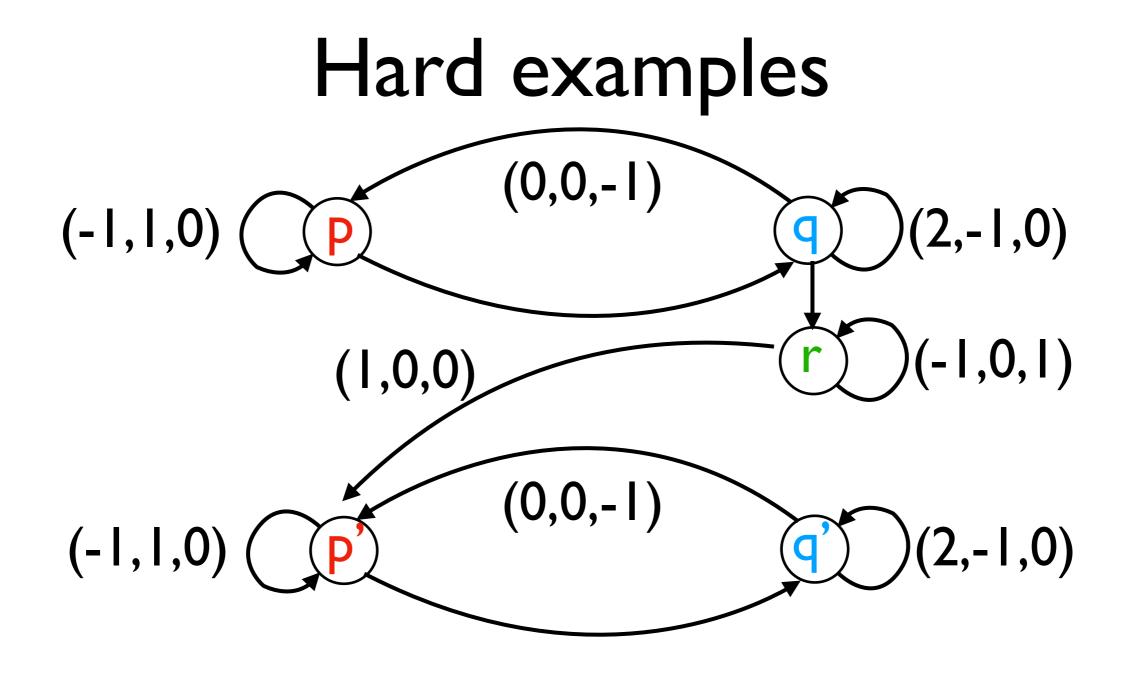
Hard examples

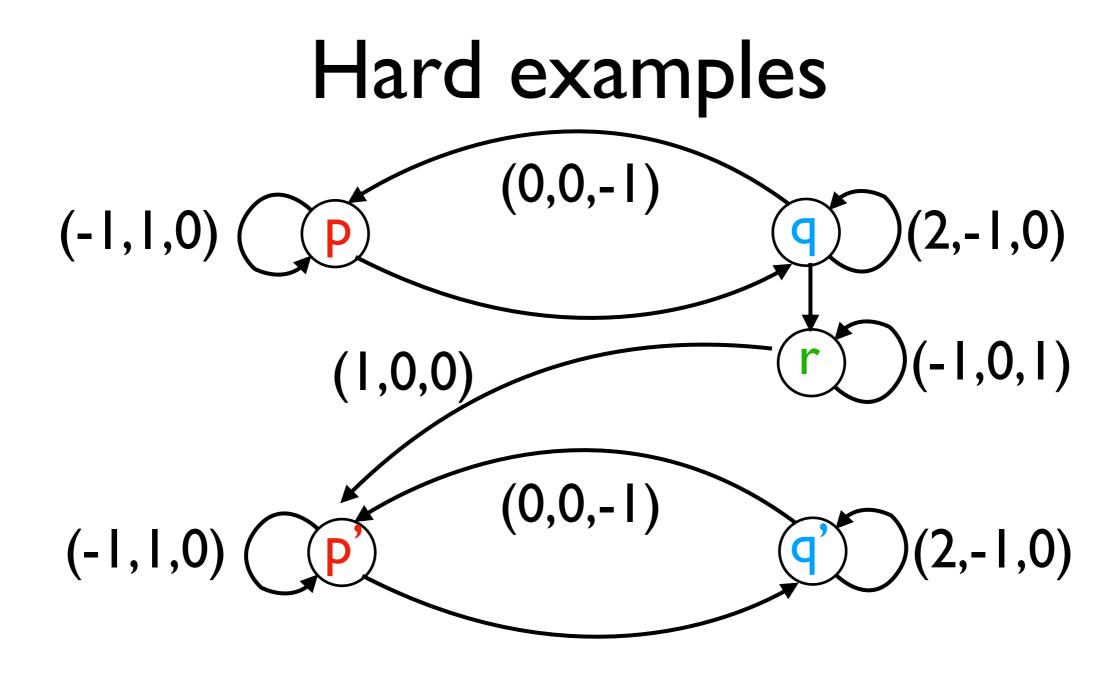




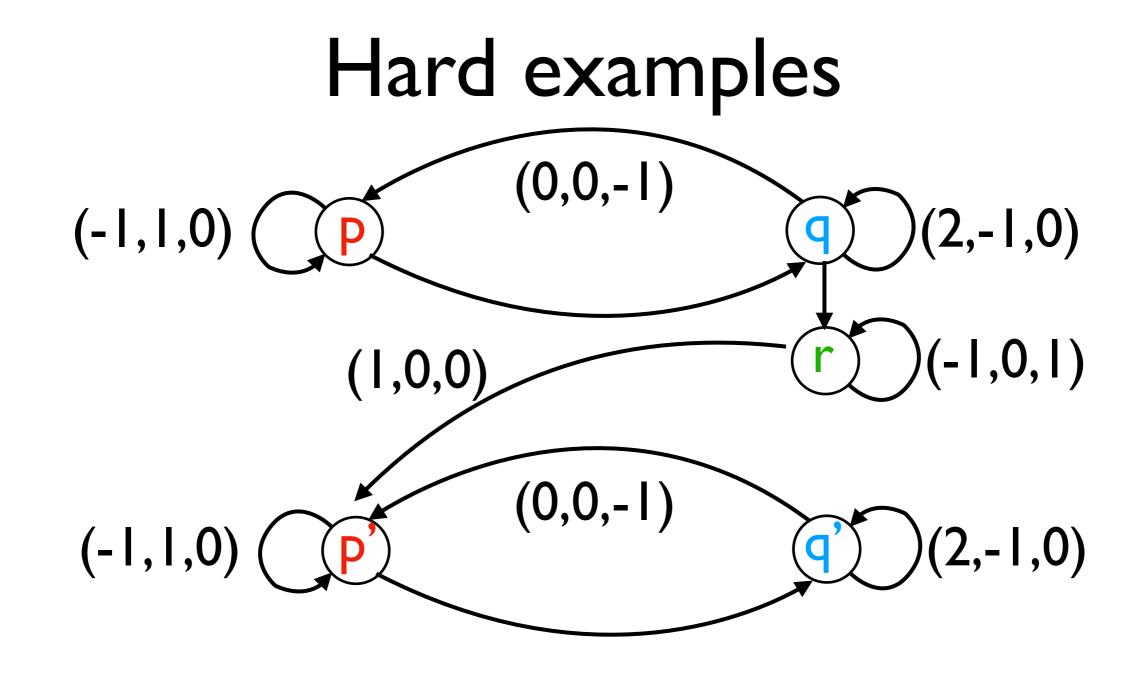




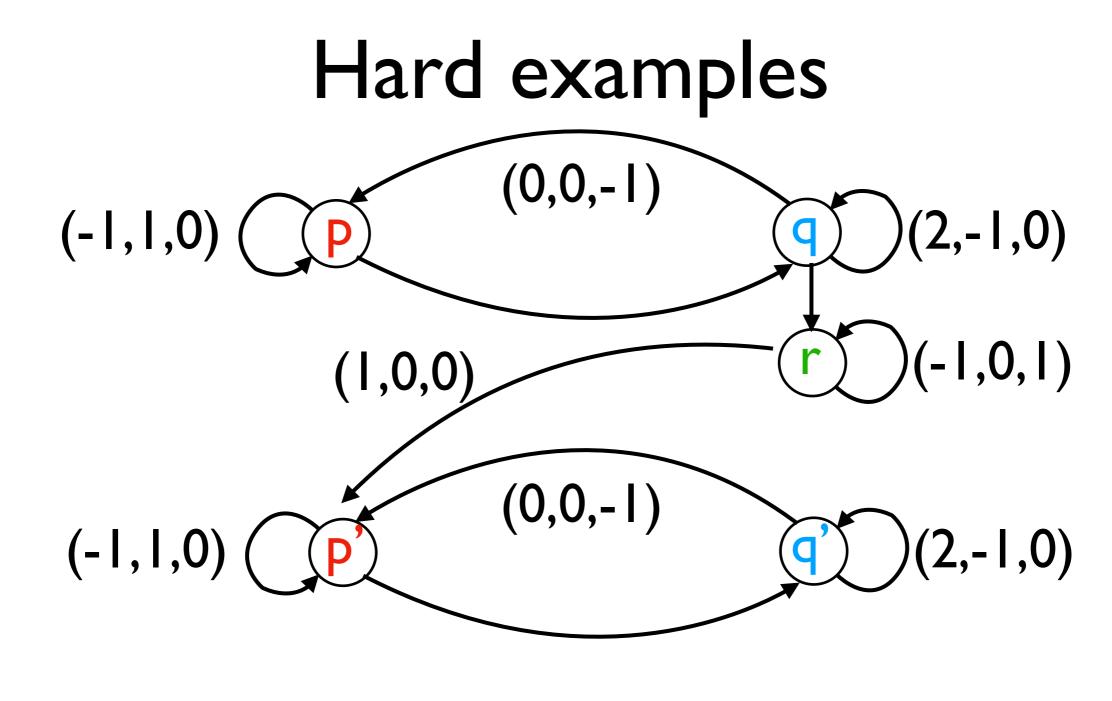




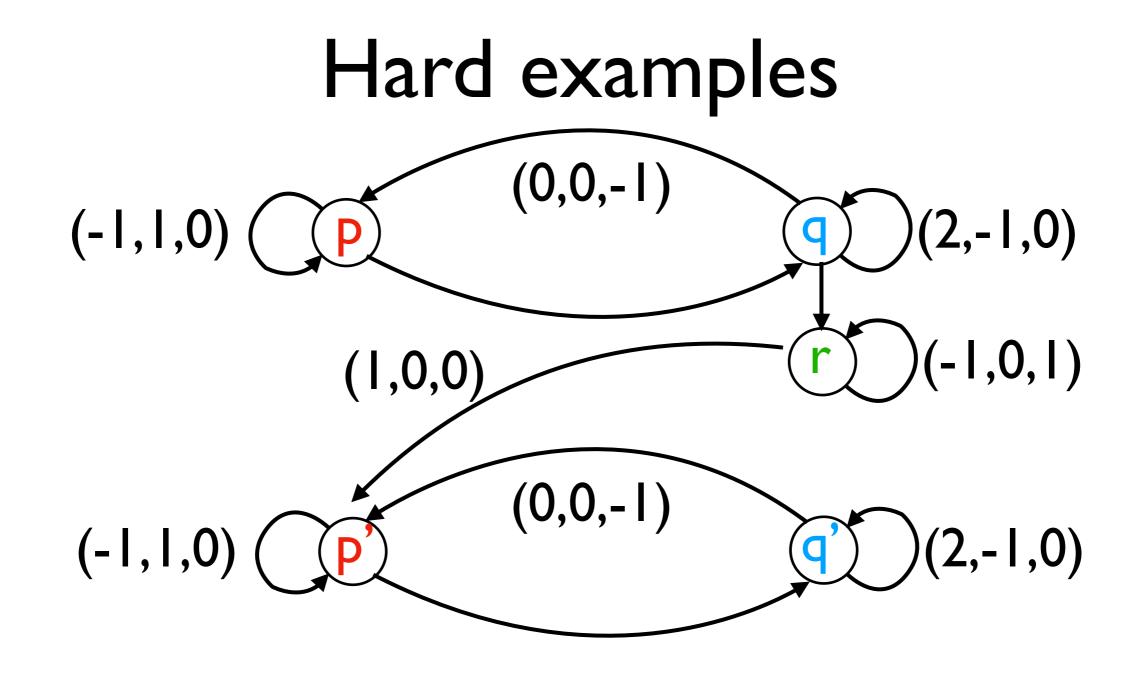
p(1,0,n)



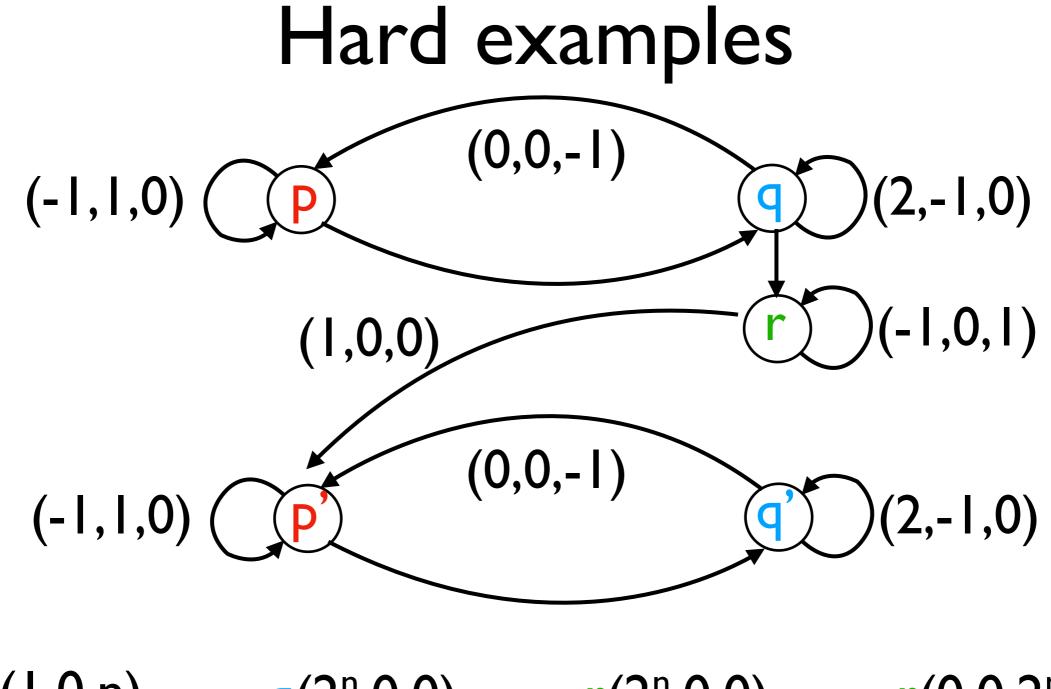
 $p(1,0,n) \longrightarrow q(2^n,0,0)$



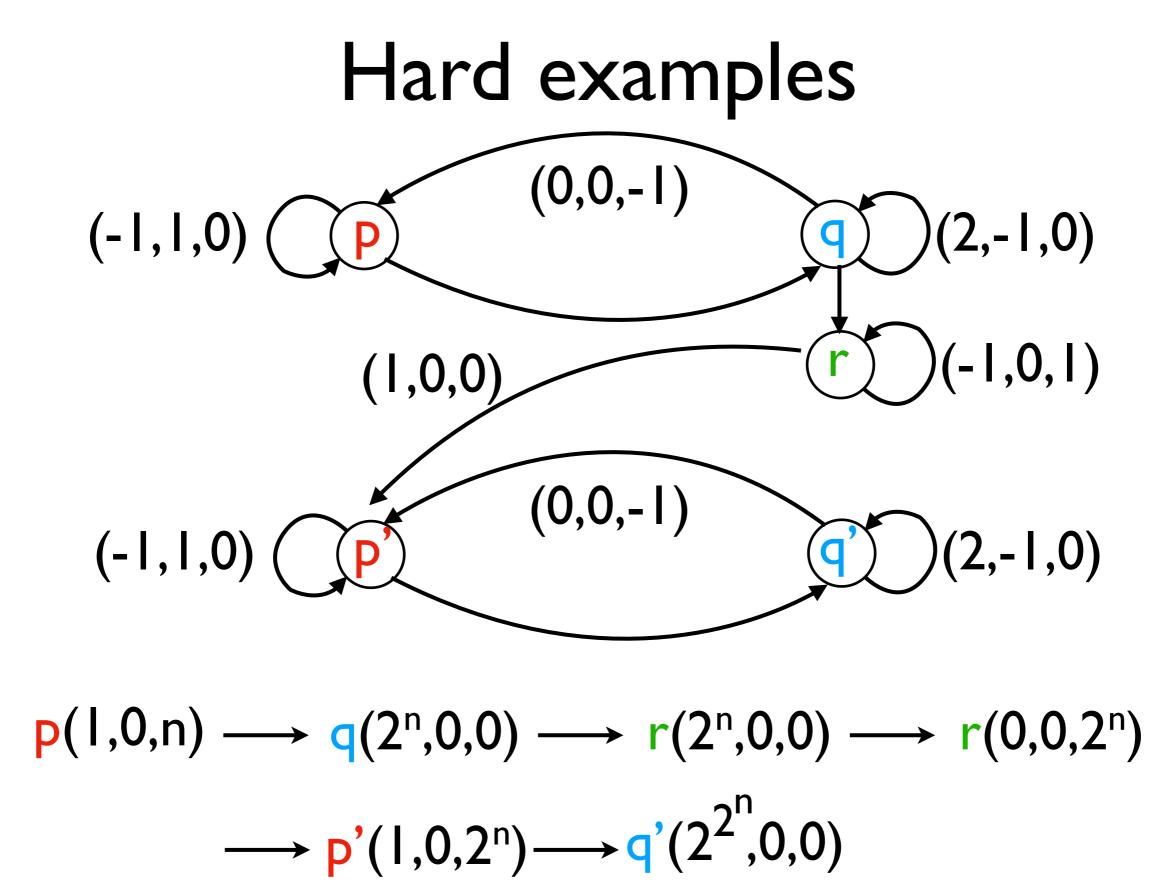
 $\mathbf{p}(1,0,n) \longrightarrow \mathbf{q}(2^n,0,0) \longrightarrow \mathbf{r}(2^n,0,0)$

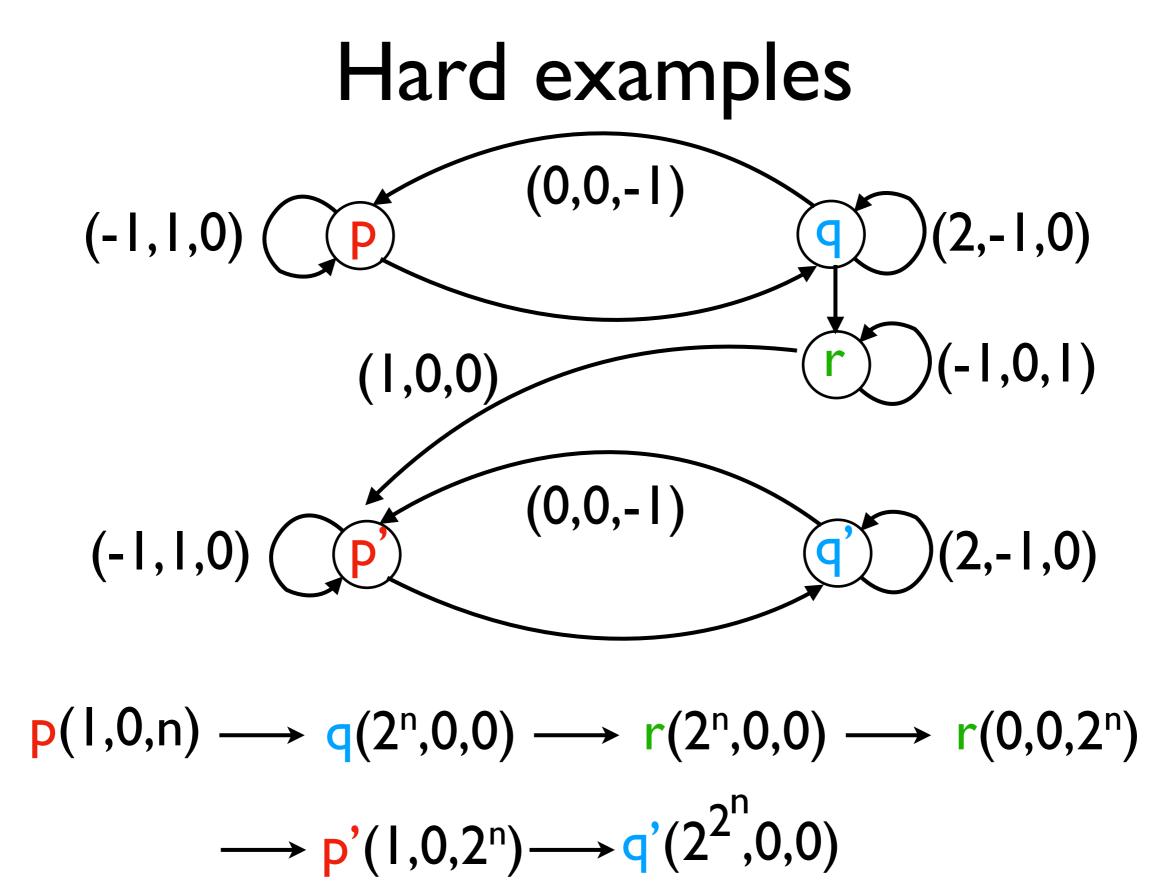


 $\mathsf{P}(\mathsf{1},0,\mathsf{n}) \longrightarrow \mathsf{q}(2^{\mathsf{n}},0,0) \longrightarrow \mathsf{r}(2^{\mathsf{n}},0,0) \longrightarrow \mathsf{r}(0,0,2^{\mathsf{n}})$

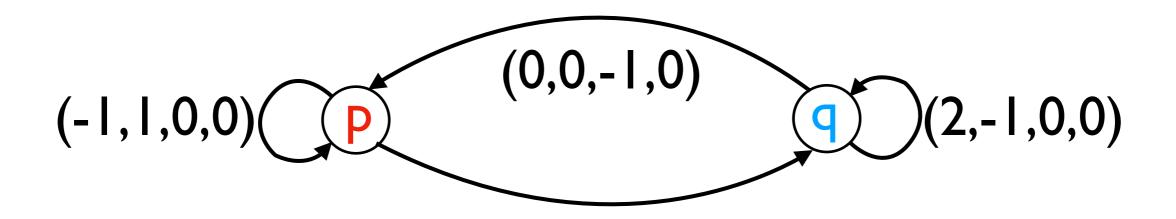


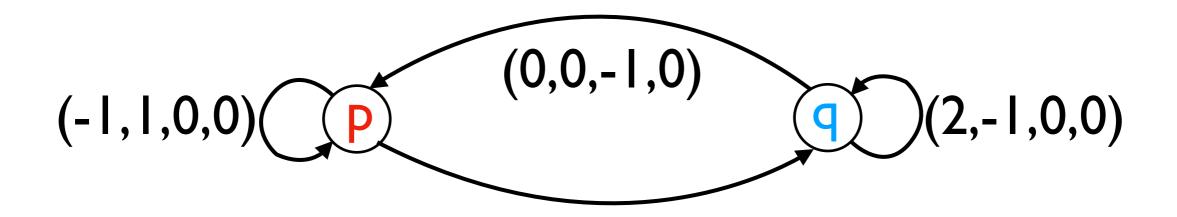
 $\mathbf{P}(1,0,\mathbf{n}) \longrightarrow \mathbf{q}(2^{n},0,0) \longrightarrow \mathbf{r}(2^{n},0,0) \longrightarrow \mathbf{r}(0,0,2^{n})$

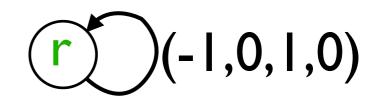


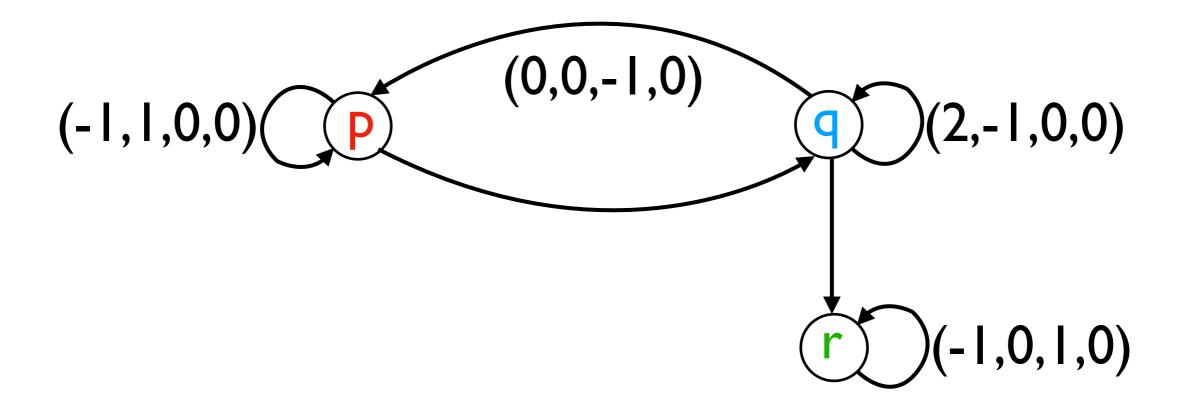


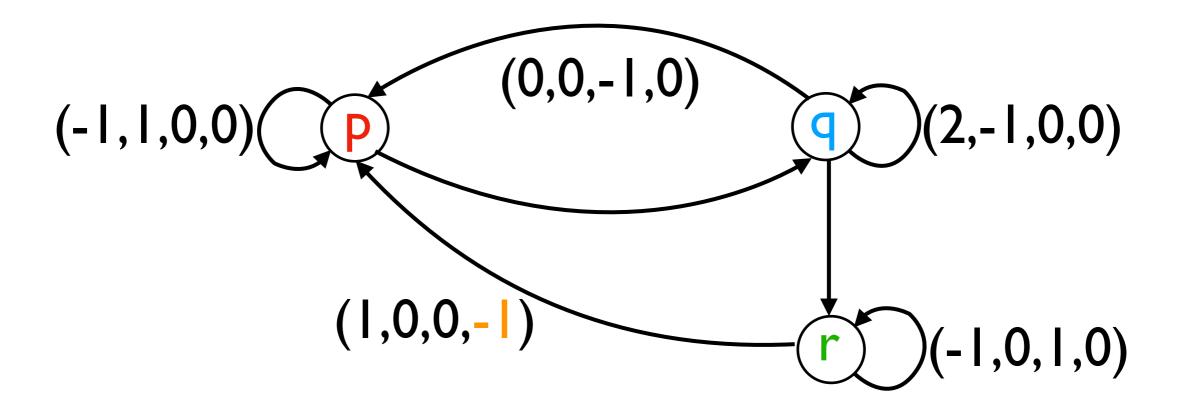
finite doubly-exponential reachability set

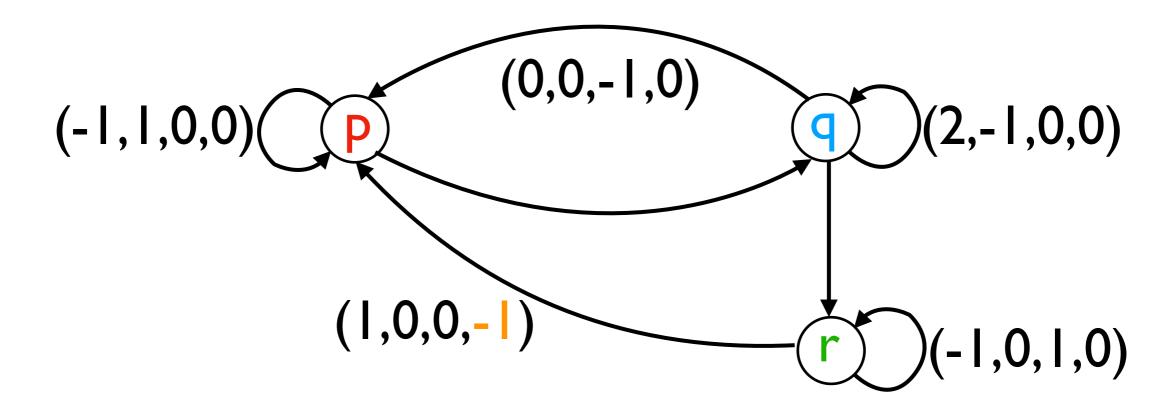




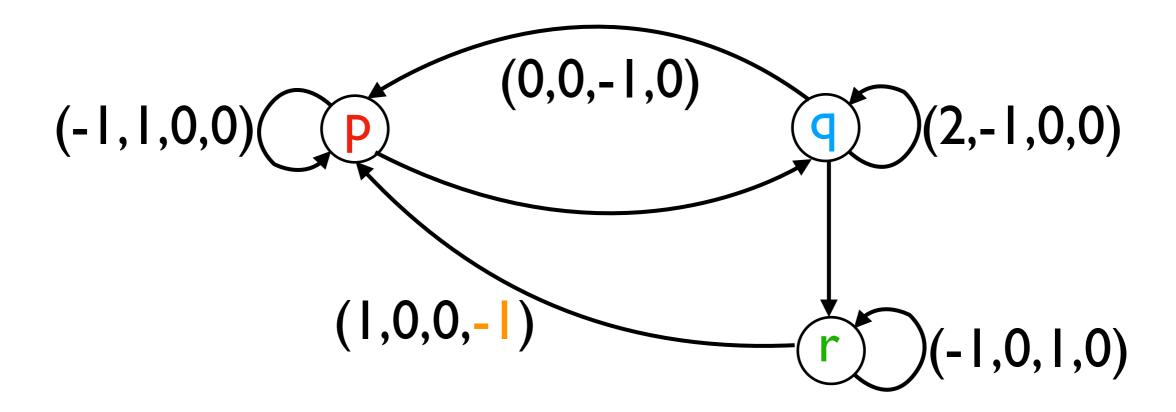




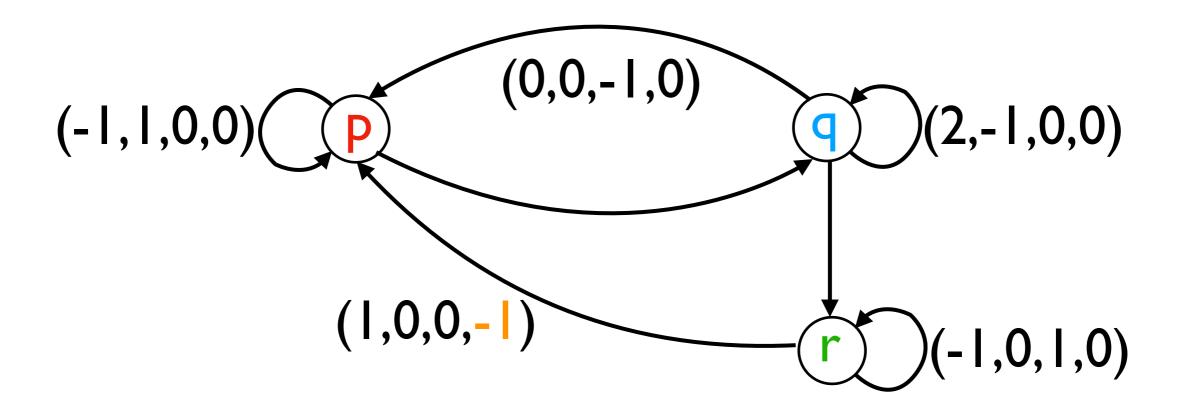




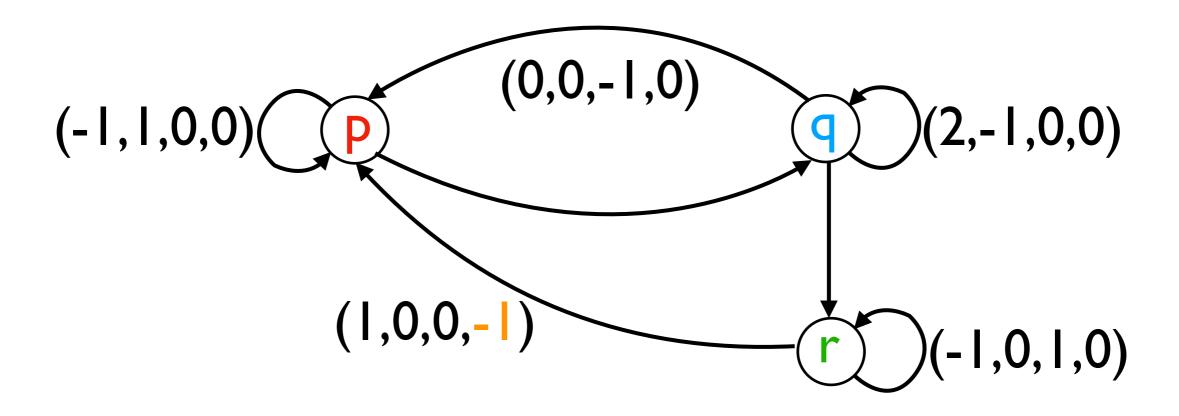
p(I,0,I,n)



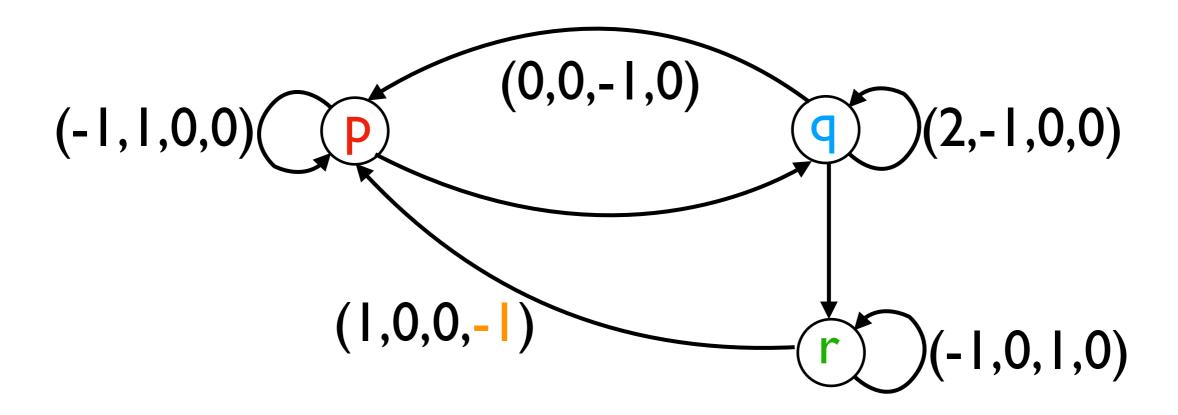
$p(1,0,1,n) \longrightarrow p(2^{1},0,1,n-1)$



 $p(1,0,1,n) \longrightarrow p(2^{1},0,1,n-1) \dots$

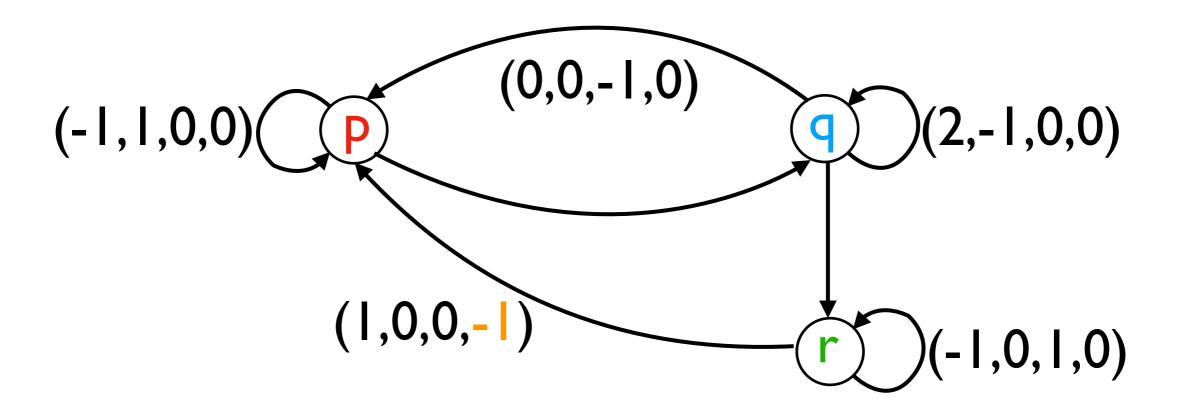


 $p(1,0,1,n) \longrightarrow p(2^{1},0,1,n-1) \dots \longrightarrow p(Tower(n),0,1,0)$



 $p(1,0,1,n) \longrightarrow p(2^{1},0,1,n-1) \dots \longrightarrow p(Tower(n),0,1,0)$

finite tower-size reachability set



 $p(1,0,1,n) \longrightarrow p(2^{1},0,1,n-1) \dots \longrightarrow p(Tower(n),0,1,0)$

finite tower-size reachability set

finite F_d -size reachability set

Question: does $p(s) \rightarrow q(t)$?

Question: does $p(s) \rightarrow q(t)$?

Question: does $p(s) \rightarrow q(t)$?

Idea: reachability in \mathbb{Z} is easy!

Linear equations (in NP)

Question: does $p(s) \rightarrow q(t)$?

Question: does $p(s) \rightarrow q(t)$?

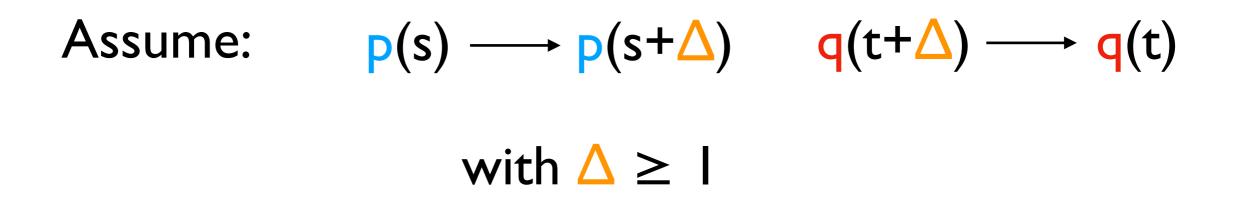
Idea: reachability in \mathbb{Z} is easy!

Assume:

Question: does $p(s) \rightarrow q(t)$?

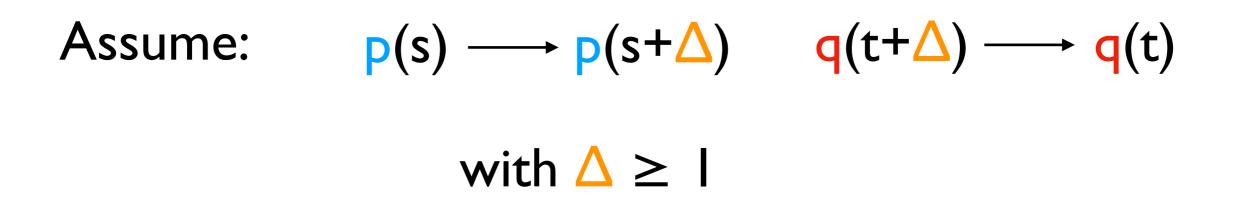
Question: does $p(s) \rightarrow q(t)$?

Question: does $p(s) \rightarrow q(t)$?



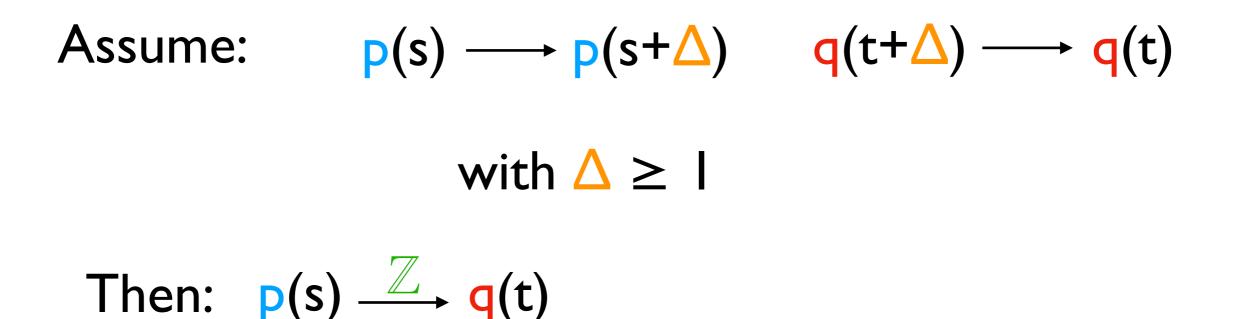
Question: does $p(s) \rightarrow q(t)$?

Idea: reachability in \mathbb{Z} is easy!

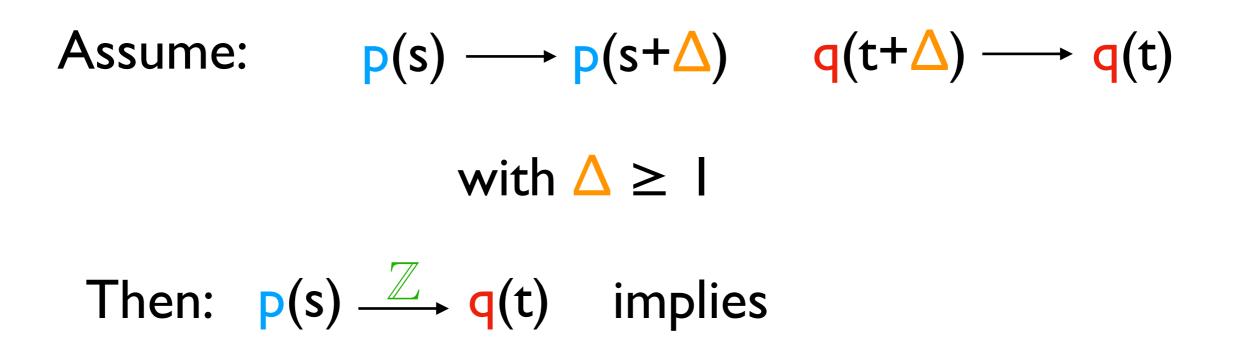


Then:

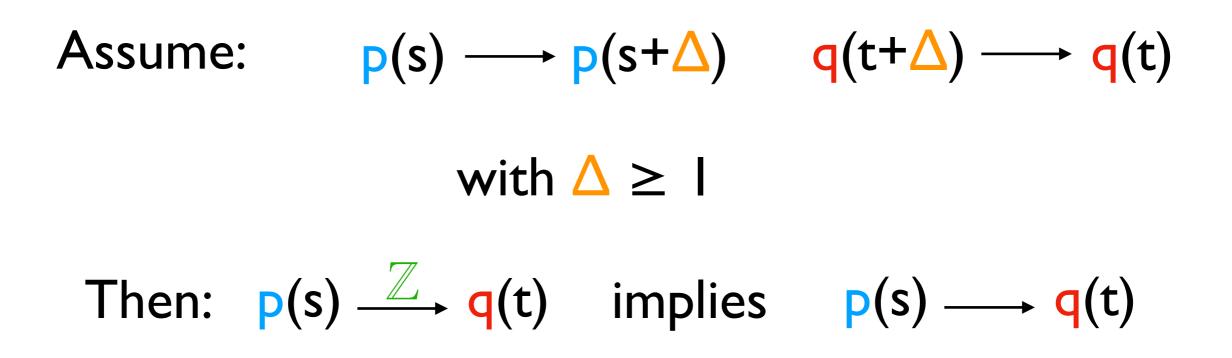
Question: does $p(s) \rightarrow q(t)$?



Question: does $p(s) \rightarrow q(t)$?



Question: does $p(s) \rightarrow q(t)$?



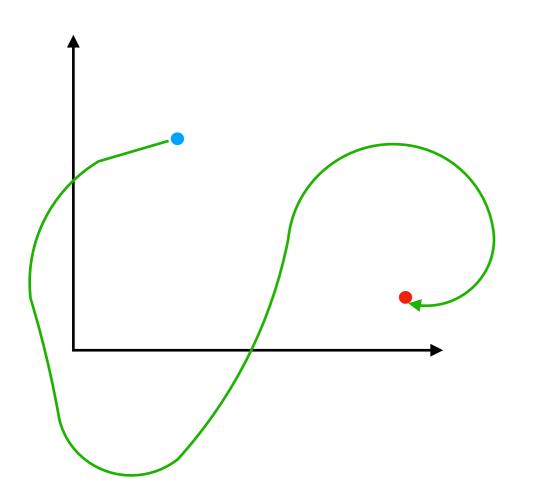
Then:

Then: $p(s) \xrightarrow{\mathbb{Z}} q(t)$

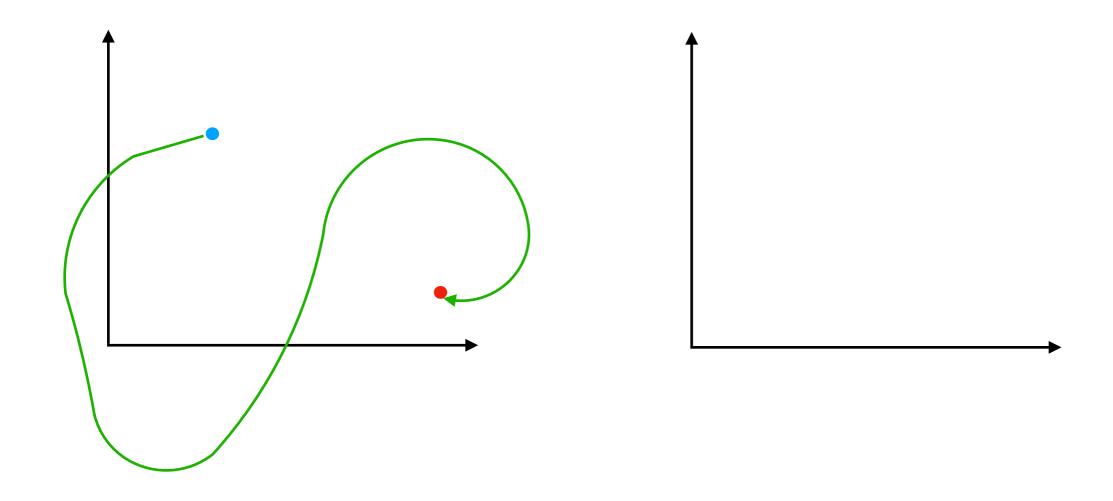
Then: $p(s) \xrightarrow{\mathbb{Z}} q(t)$ implies

Then: $p(s) \xrightarrow{\mathbb{Z}} q(t)$ implies $p(s) \longrightarrow q(t)$

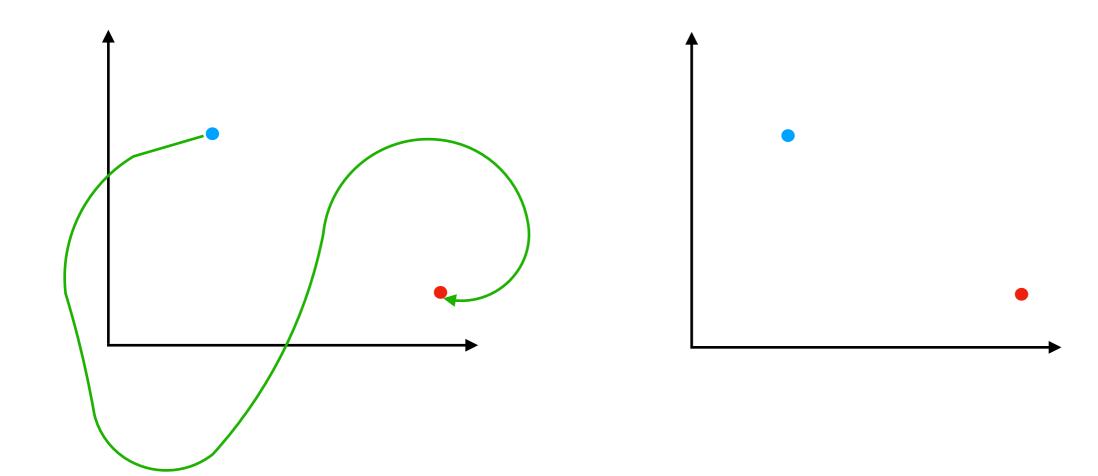
Then: $p(s) \xrightarrow{\mathbb{Z}} q(t)$ implies $p(s) \longrightarrow q(t)$

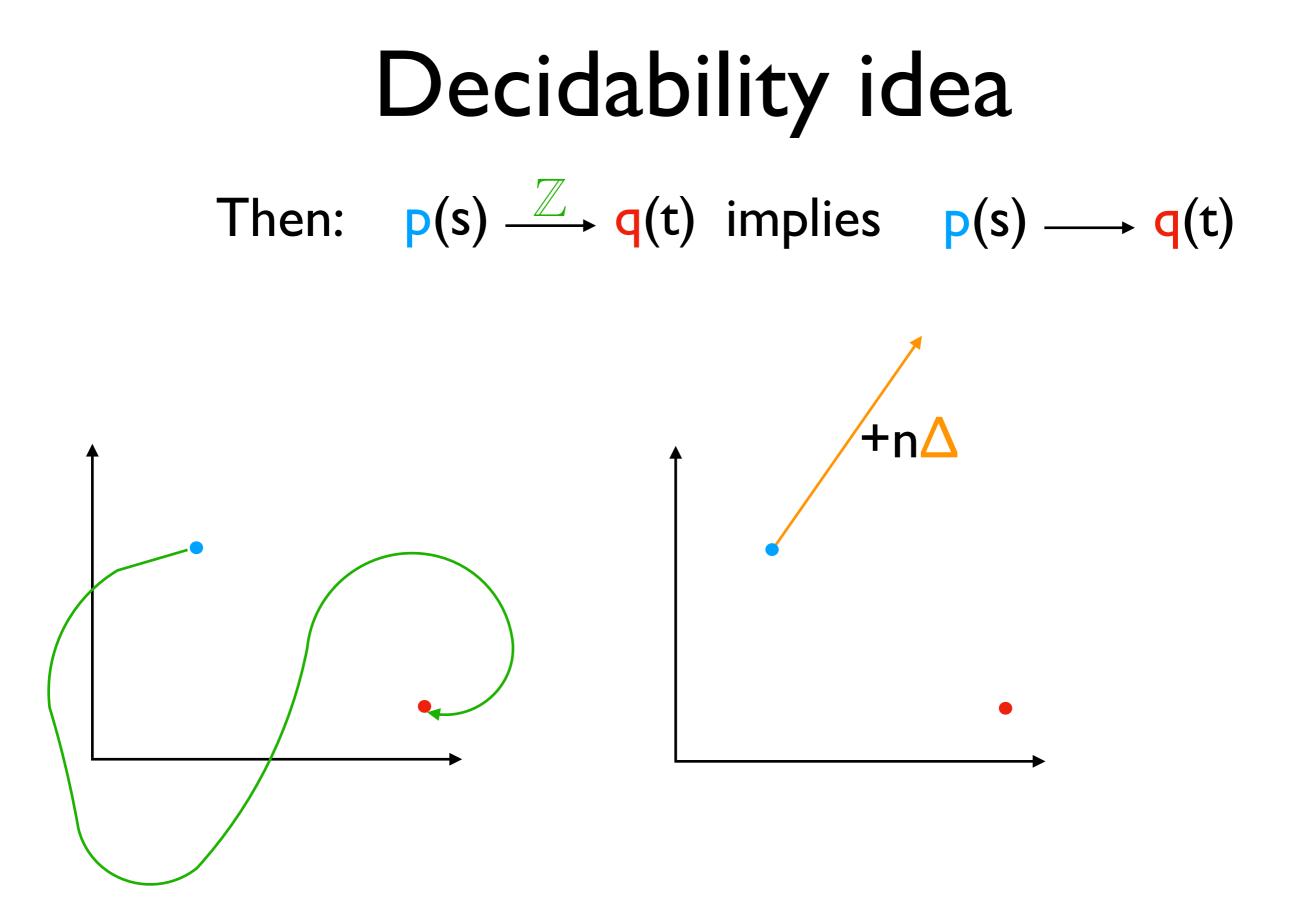


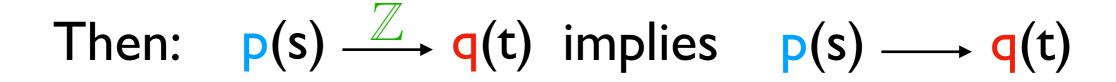
Then:
$$p(s) \xrightarrow{\mathbb{Z}} q(t)$$
 implies $p(s) \longrightarrow q(t)$

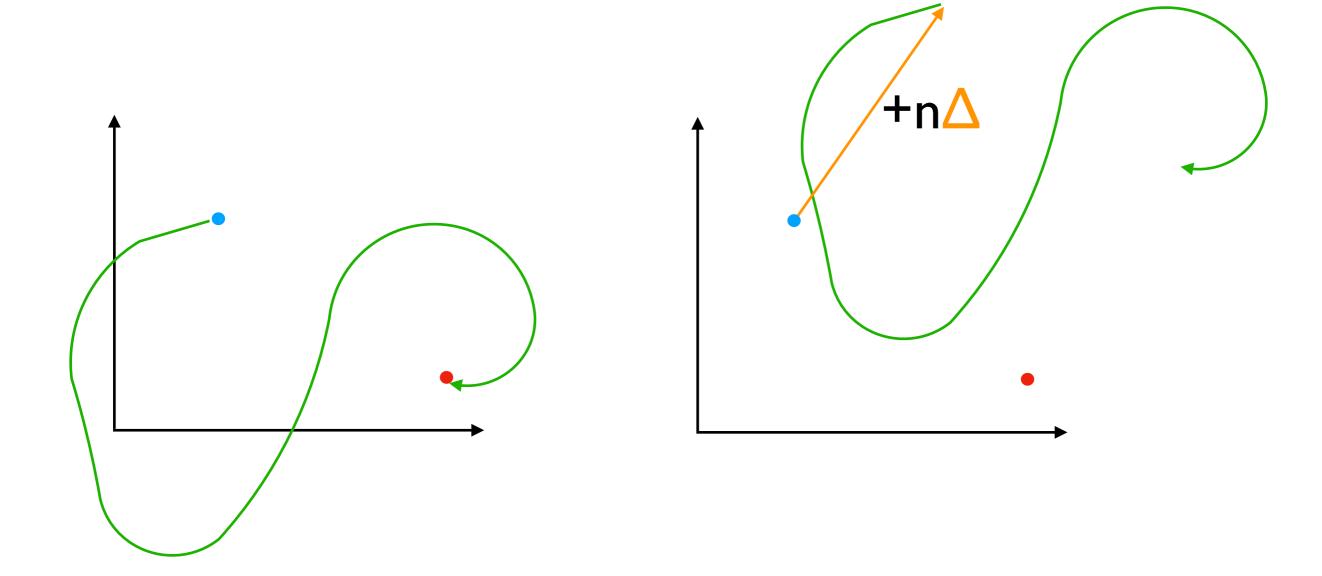


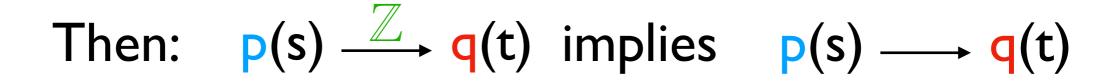
Then:
$$p(s) \xrightarrow{\mathbb{Z}} q(t)$$
 implies $p(s) \longrightarrow q(t)$

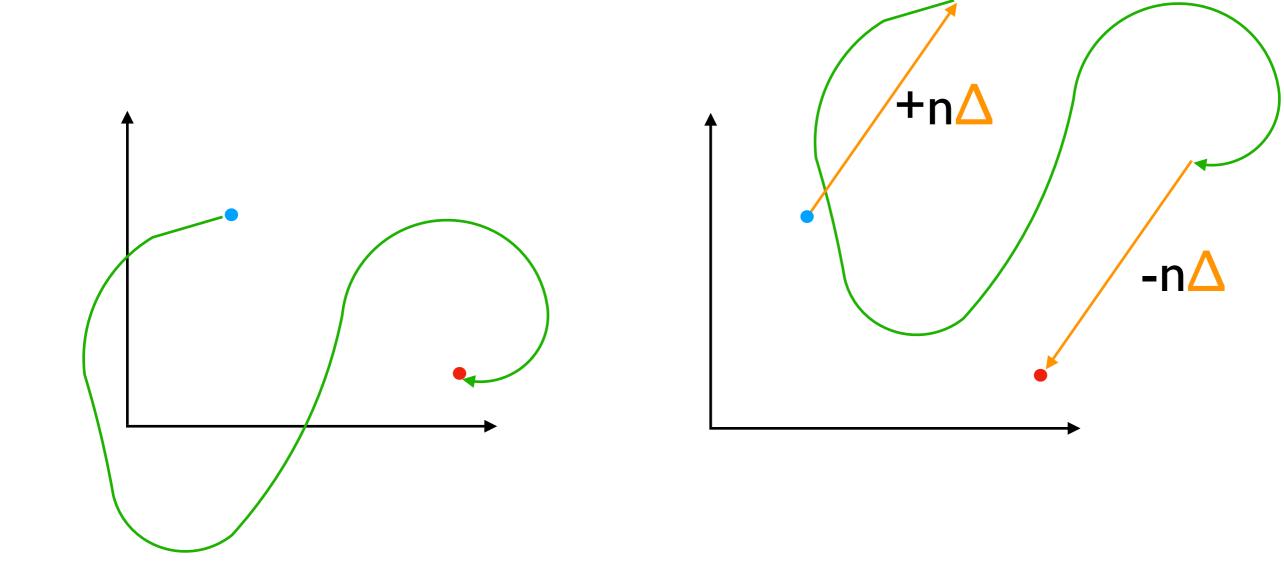












Assume:

Assume: $p(s) \rightarrow p(s+\Delta_1)$

Assume: $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

Assume: $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

Then:

Assume: $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

Then:

Assume: $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

Then:

 $p(s) \xrightarrow{\mathbb{Z}} q(t)$ by runs using each transition many times

Assume: $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

Then:

 $p(s) \xrightarrow{\mathbb{Z}} q(t)$ by runs using each transition many times implies

Assume: $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

Then:

 $p(s) \xrightarrow{\mathbb{Z}} q(t)$ by runs using each transition many times implies $p(s) \longrightarrow q(t)$

Assume: $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

Then:

 $p(s) \xrightarrow{\mathbb{Z}} q(t)$ by runs using each transition many times implies $p(s) \longrightarrow q(t)$

Why?

Assume: $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

Then:

 $p(s) \xrightarrow{\mathbb{Z}} q(t)$ by runs using each transition many times implies $p(s) \longrightarrow q(t)$ Why? $p(s) \xrightarrow{\mathbb{Z}} p(s+\Delta_2-\Delta_1)$

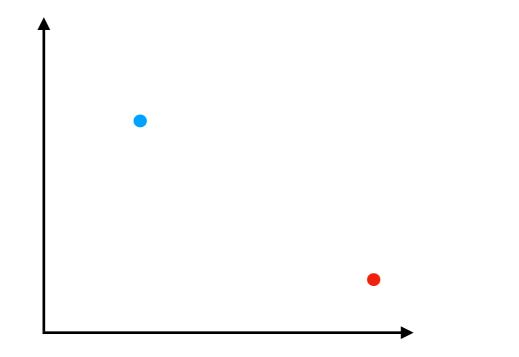
 $p(s) \longrightarrow p(s + \Delta_1)$

 $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t)$

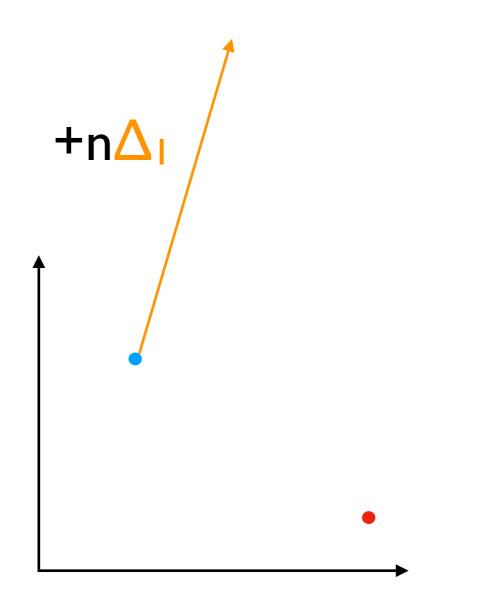
 $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t) \quad p(s) \stackrel{\mathbb{Z}}{\longrightarrow} p(s+\Delta_2-\Delta_1)$

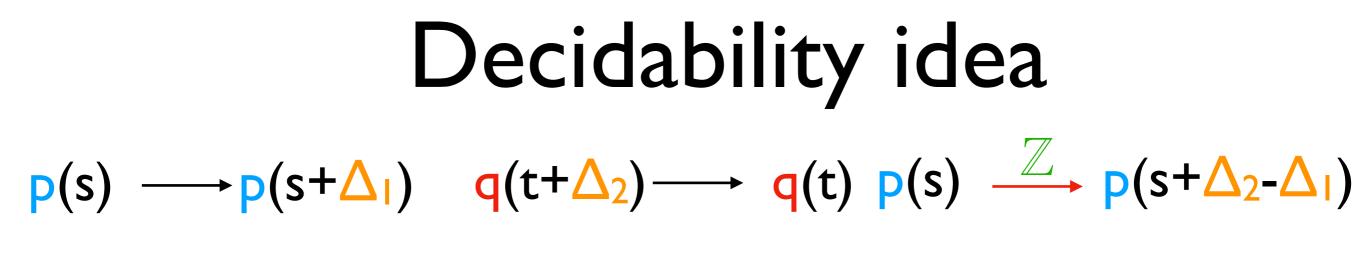
 $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t) \quad p(s) \xrightarrow{\mathbb{Z}} p(s+\Delta_2-\Delta_1)$

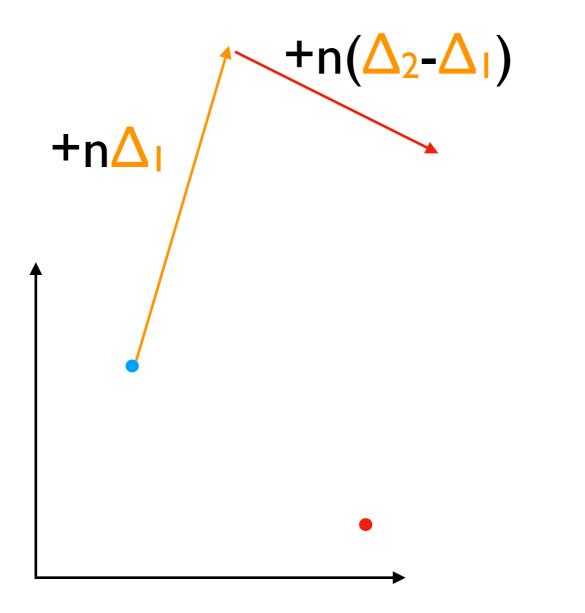
 $p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t) \quad p(s) \xrightarrow{\mathbb{Z}} p(s+\Delta_2-\Delta_1)$

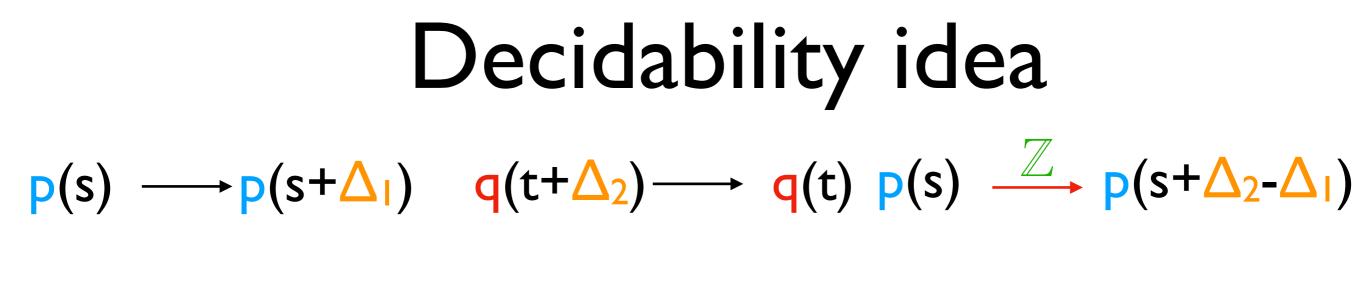


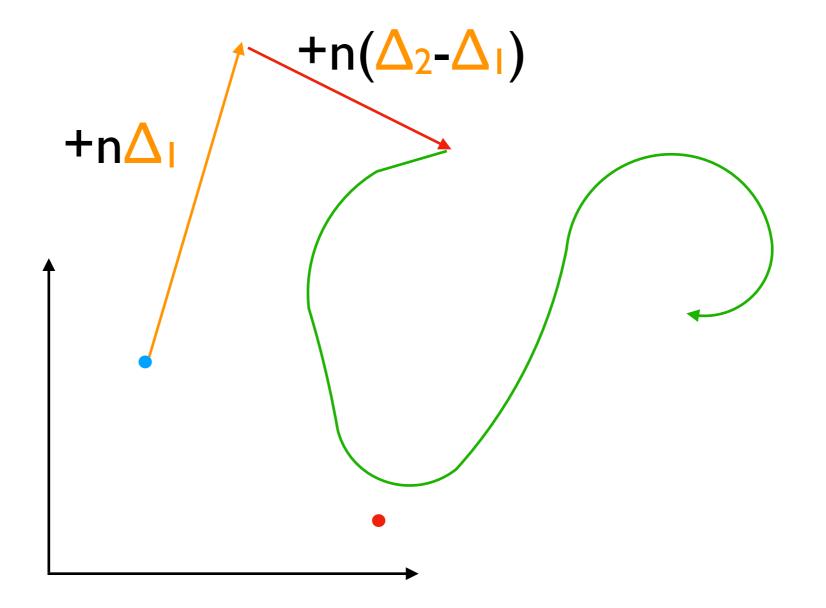
$\begin{array}{c} \text{Decidability idea} \\ p(s) \longrightarrow p(s+\Delta_1) \quad q(t+\Delta_2) \longrightarrow q(t) \ p(s) \stackrel{\mathbb{Z}}{\longrightarrow} p(s+\Delta_2-\Delta_1) \end{array}$

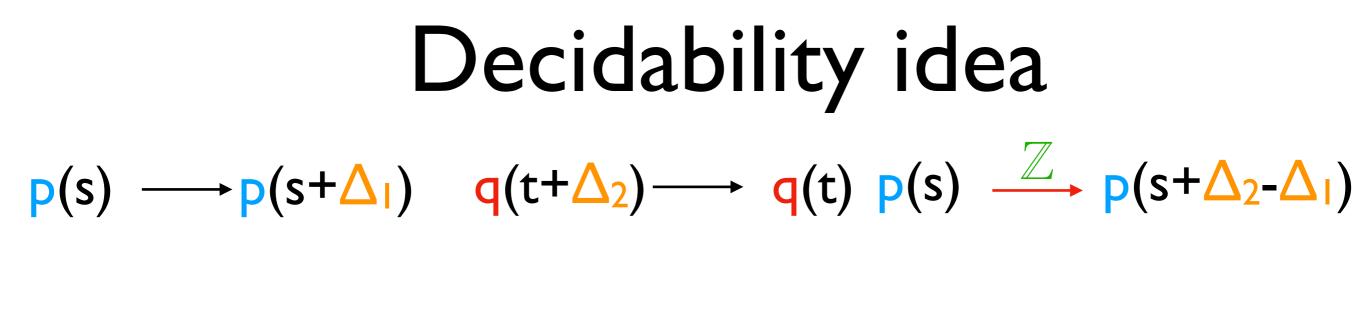


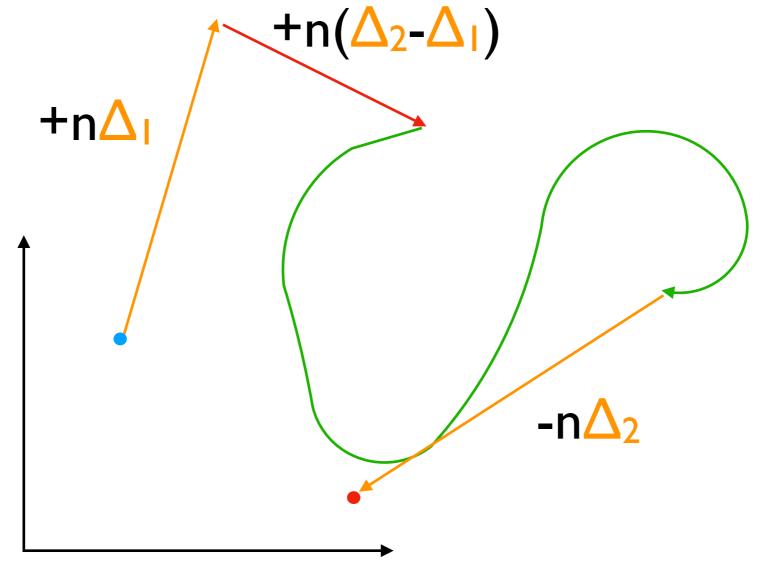












Check whether:

Check whether:

$$\mathbf{p}(\mathbf{s}) \longrightarrow \mathbf{p}(\mathbf{s} + \Delta_{\mathbf{I}})$$

Check whether:

$$\mathbf{p}(s) \longrightarrow \mathbf{p}(s + \Delta_1) \qquad \mathbf{q}(t + \Delta_2) \longrightarrow \mathbf{q}(t)$$

Check whether:

p(s) → p(s+ Δ_1) q(t+ Δ_2) → q(t) p(s) $\xrightarrow{\mathbb{Z}}$ q(t) by runs using each transition many times

Check whether:

 $p(s) \rightarrow p(s+\Delta_1)$ $q(t+\Delta_2) \rightarrow q(t)$ $p(s) \xrightarrow{\mathbb{Z}} q(t)$ by runs using each transition many times

If yes then return YES

Check whether:

p(s) → p(s+ Δ_1) q(t+ Δ_2) → q(t) p(s) $\xrightarrow{\mathbb{Z}}$ q(t) by runs using each transition many times

If yes then return YES

If no then simplify

Check whether:

 $p(s) \rightarrow p(s+\Delta_1)$ $q(t+\Delta_2) \rightarrow q(t)$ $p(s) \xrightarrow{\mathbb{Z}} q(t)$ by runs using each transition many times

If yes then return YES

If no then simplify

Involved!

Theorem

The Reachability Problem for (3k+2)-VASSes is \mathbb{F}_k -hard.

Theorem

The Reachability Problem for (3k+2)-VASSes is \mathbb{F}_k -hard.

Sławomir Lasota

Theorem

The Reachability Problem for (3k+2)-VASSes is \mathbb{F}_k -hard.

Sławomir Lasota

Cz., Łukasz Orlikowski: 6k

Theorem

The Reachability Problem for (3k+2)-VASSes is F_k-hard.

Cz., Łukasz Orlikowski: 6k

Jerome Leroux (currently): 2k+4

Big counters

The following problem is \mathbb{F}_k -complete ($k \geq 3$)

The following problem is \mathbb{F}_k -complete ($k \ge 3$)

Given:

The following problem is \mathbb{F}_k -complete ($k \ge 3$)

Given: a two-counter automaton A with zero-tests, number n

The following problem is \mathbb{F}_k -complete ($k \ge 3$)

Given: a two-counter automaton A with zero-tests, number n

The following problem is \mathbb{F}_k -complete ($k \ge 3$)

Given: a two-counter automaton A with zero-tests, number n

Question: does A have an $F_k(n)$ -bounded run?

Lemma

If for each n there is a d-VASS with transitions of size \leq n such that

Lemma

If for each n there is a d-VASS with transitions of size \leq n such that

arbitrary big m guessed some counters reach 0

Lemma

If for each n there is a d-VASS with transitions of size \leq n such that

arbitrary big m guessed some counters reach 0

→ ($F_k(n), m, F_k(n) m$)

Lemma

If for each n there is a d-VASS with transitions of size \leq n such that

arbitrary big m guessed some counters reach 0

 $\rightarrow (F_k(n), m, F_k(n) m)$

then reachability for d-VASSes is F_k -hard

Lemma

If for each n there is a d-VASS with transitions of size \leq n such that

arbitrary big m guessed some counters reach 0

 $\rightarrow (F_k(n), m, F_k(n) m)$

then reachability for d-VASSes is F_k -hard

Proof: simulate $F_k(n)$ -bounded run

Triples (B, m, Bm) allow zero-testing

Triples (B, m, Bm) allow zero-testing

for m/2 zero-tests on B-bounded counters

Triples (B, m, Bm) allow zero-testing

for m/2 zero-tests on B-bounded counters

Goal: compute $(F_k(n), m, F_k(n), m)$

Triples (B, m, Bm) allow zero-testing

for m/2 zero-tests on B-bounded counters

Goal: compute $(F_k(n), m, F_k(n), m)$

For k = 1 easy: (2n, 0, 0) + m(0, 1, 2n)

Assume (x, y, z) = (B, m, Bm)

Assume (x, y, z) = (B, m, Bm)

Let x' = 0

Assume (x, y, z) = (B, m, Bm)

keep x+x' = B

Let x' = 0

Assume (x, y, z) = (B, m, Bm)

keep x+x' = B

Let x' = 0

zero-test(x'):

keep x+x' = B

Assume (x, y, z) = (B, m, Bm)

Let x' = 0

zero-test(x'):

loop {inc(x'), dec(x), dec(z)}

keep x+x' = B

Assume (x, y, z) = (B, m, Bm)

Let x' = 0

zero-test(x'):

loop {inc(x'), dec(x), dec(z)}
loop {dec(x'), inc(x), dec(z)}

keep x+x' = B

Assume (x, y, z) = (B, m, Bm)

Let x' = 0

zero-test(x'):

loop {inc(x'), dec(x), dec(z)}
loop {dec(x'), inc(x), dec(z)}
y := y-2

keep x+x' = B

y dec by 2

Assume (x, y, z) = (B, m, Bm)Let x' = 0zero-test(x'): loop {inc(x'), dec(x), dec(z)} loop {dec(x'), inc(x), dec(z)} y := y-2

keep x+x' = B

y dec by 2

z dec by $\leq 2B$

Assume (x, y, z) = (B, m, Bm) Let x' = 0 zero-test(x'): loop {inc(x'), dec(x), dec(z)} loop {dec(x'), inc(x), dec(z)} y := y-2

Triples Assume (x, y, z) = (B, m, Bm)keep x+x' = BLet x' = 0zero-test(x'): loop {inc(x'), dec(x), dec(z)} y dec by 2 loop {dec(x'), inc(x), dec(z)} z dec by $\leq 2B$ y := y-2

At the end check if z = 0

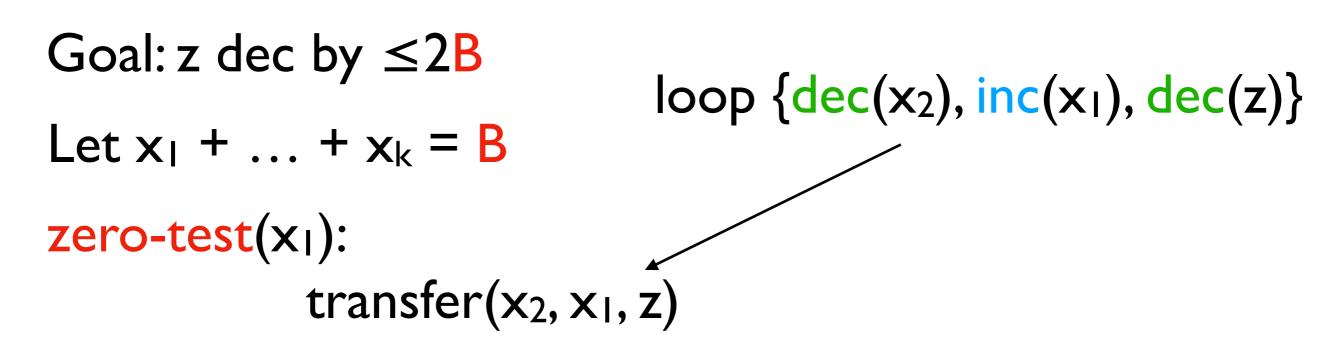
Goal: z dec by $\leq 2B$

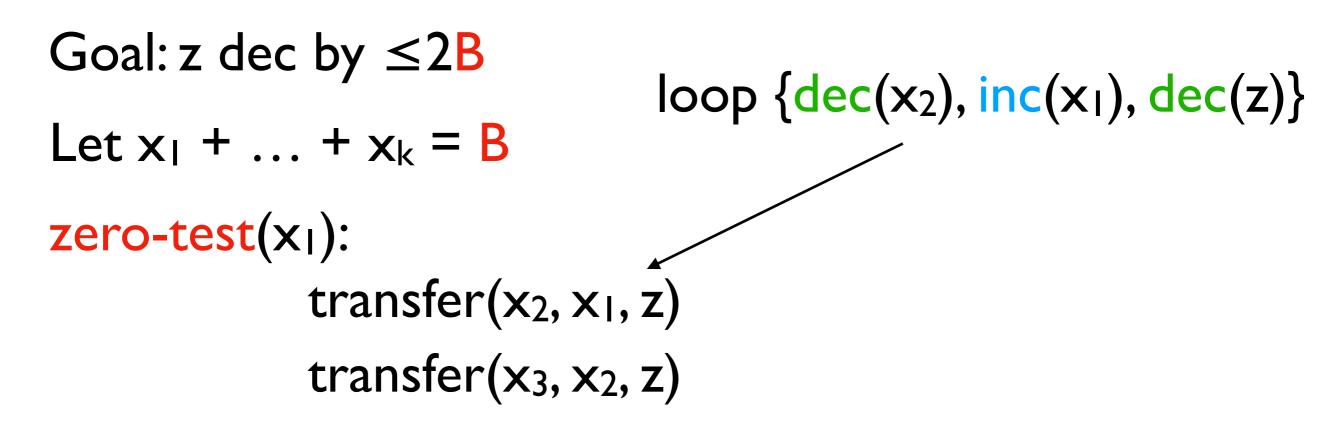
- Goal: z dec by $\leq 2B$
- Let $x_1 + ... + x_k = B$

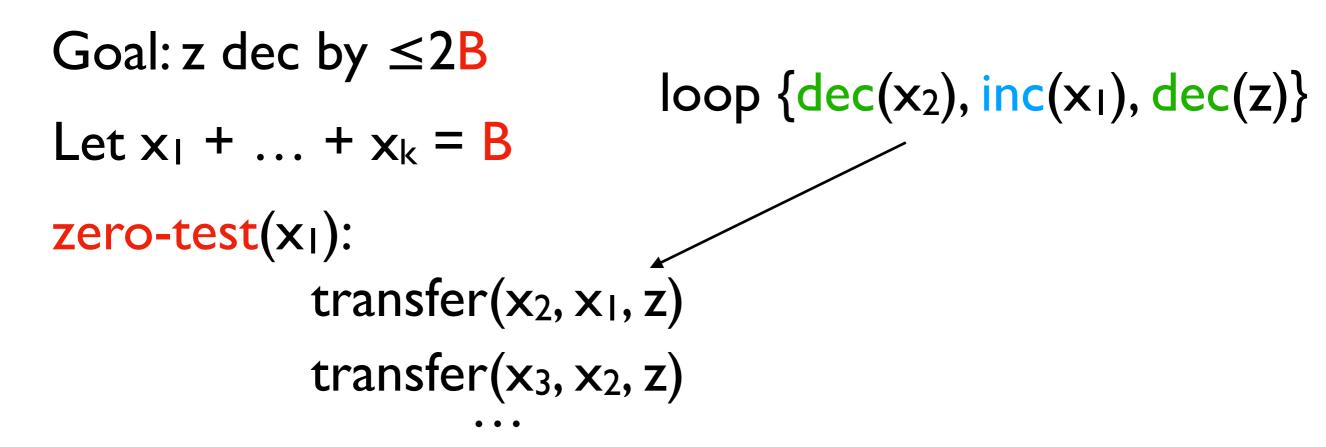
- Goal: z dec by $\leq 2B$
- Let $x_1 + ... + x_k = B$

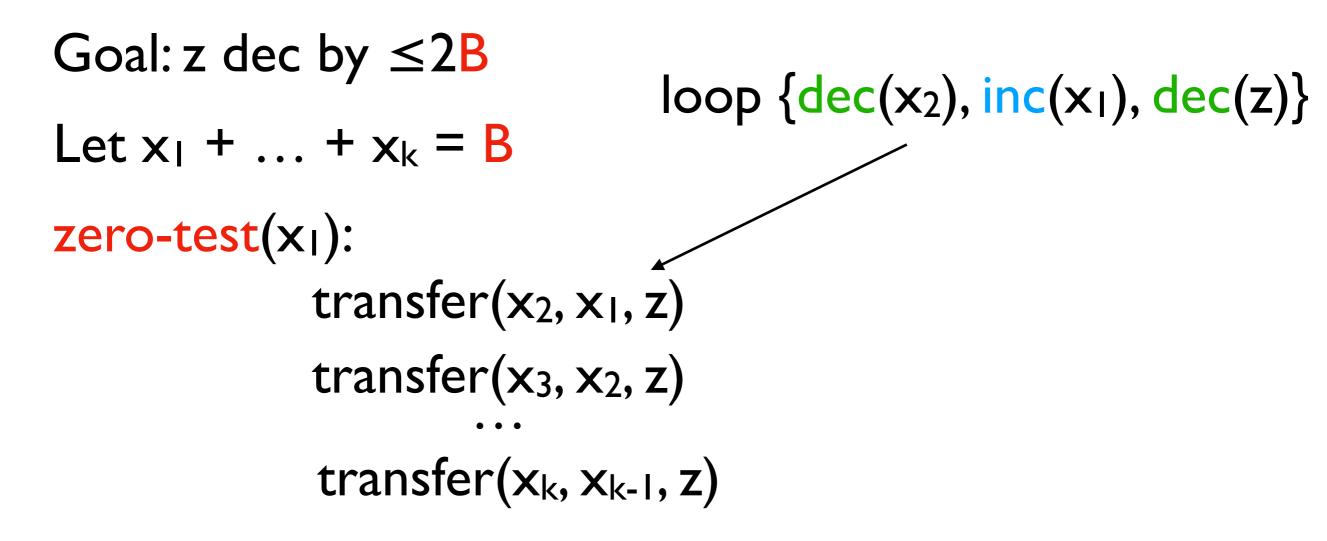
zero-test(x_l):

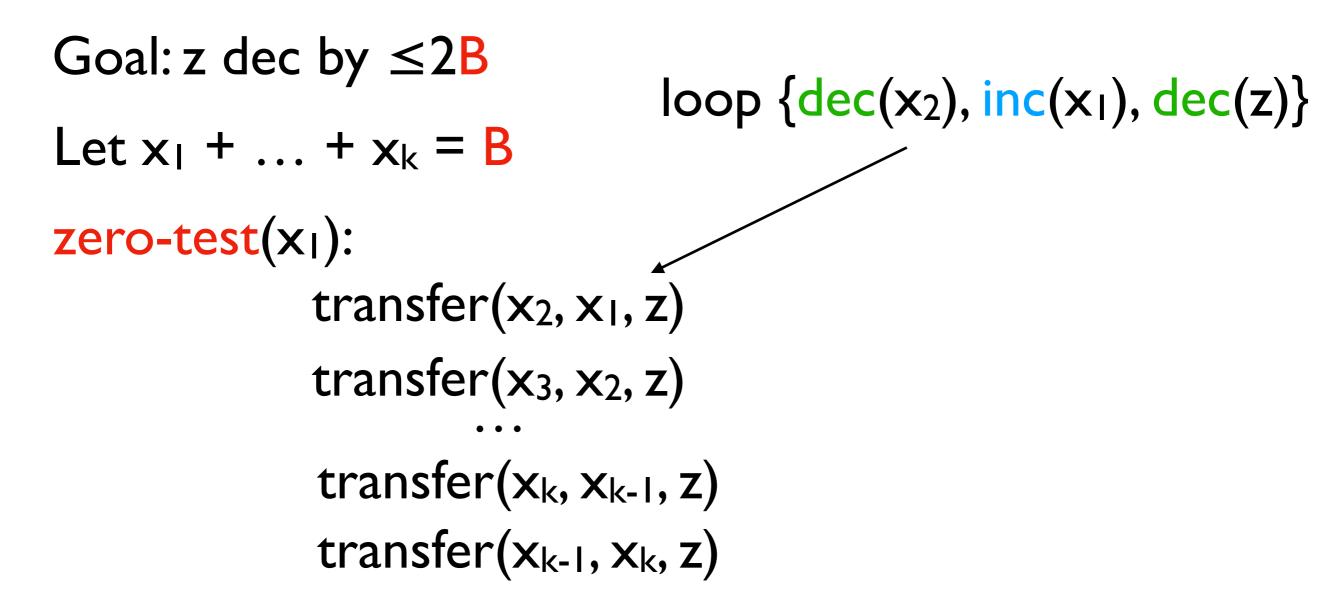
```
Goal: z dec by \leq 2B
Let x<sub>1</sub> + ... + x<sub>k</sub> = B
zero-test(x<sub>1</sub>):
transfer(x<sub>2</sub>, x<sub>1</sub>, z)
```

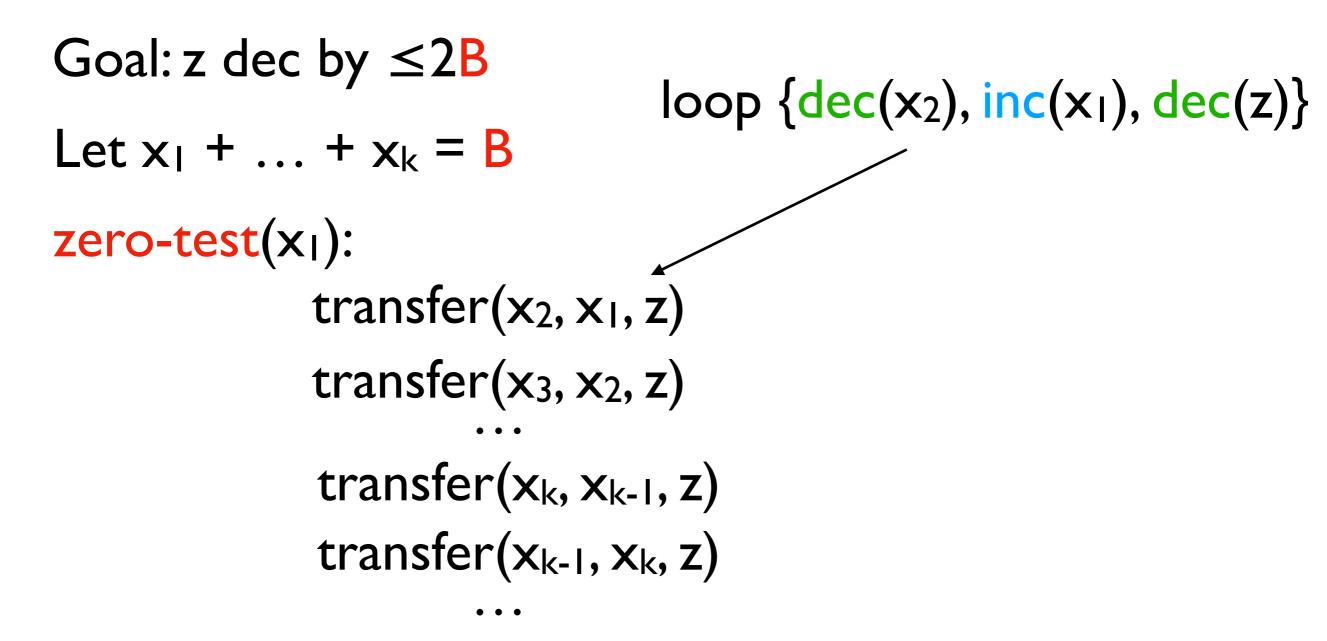


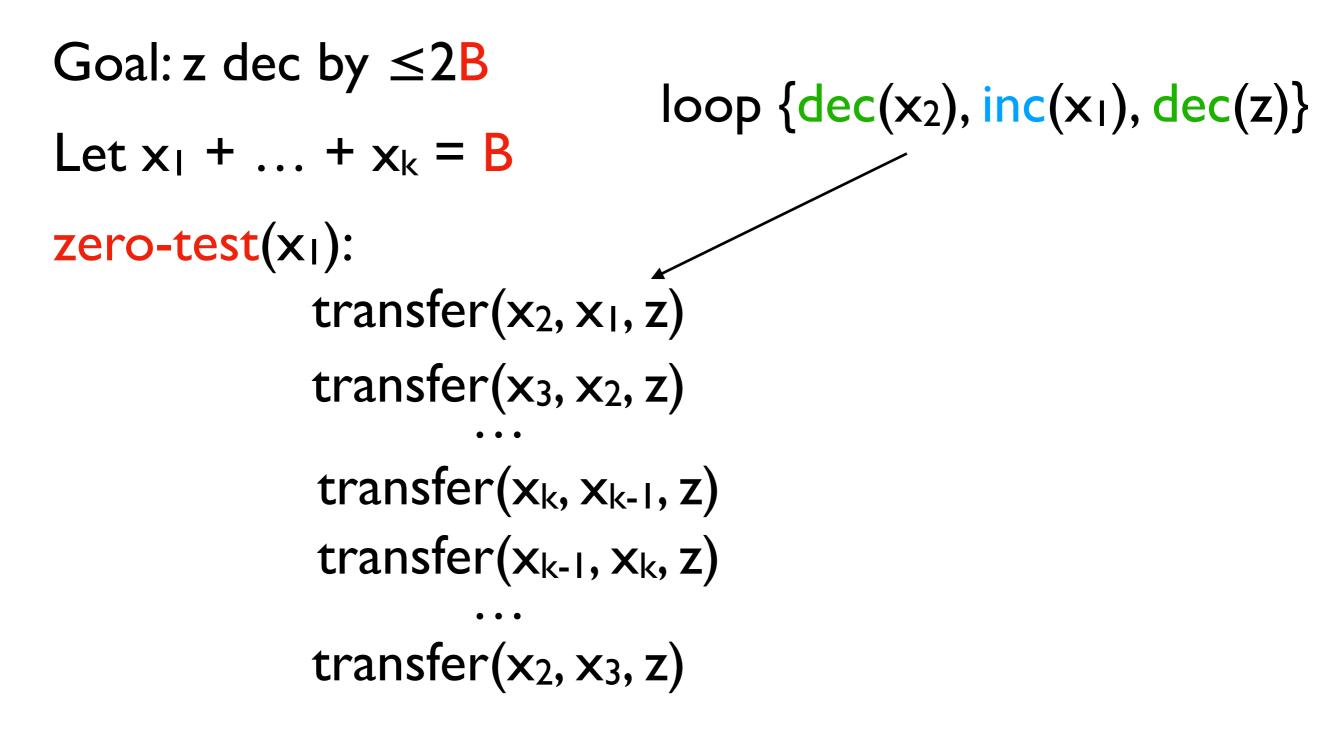






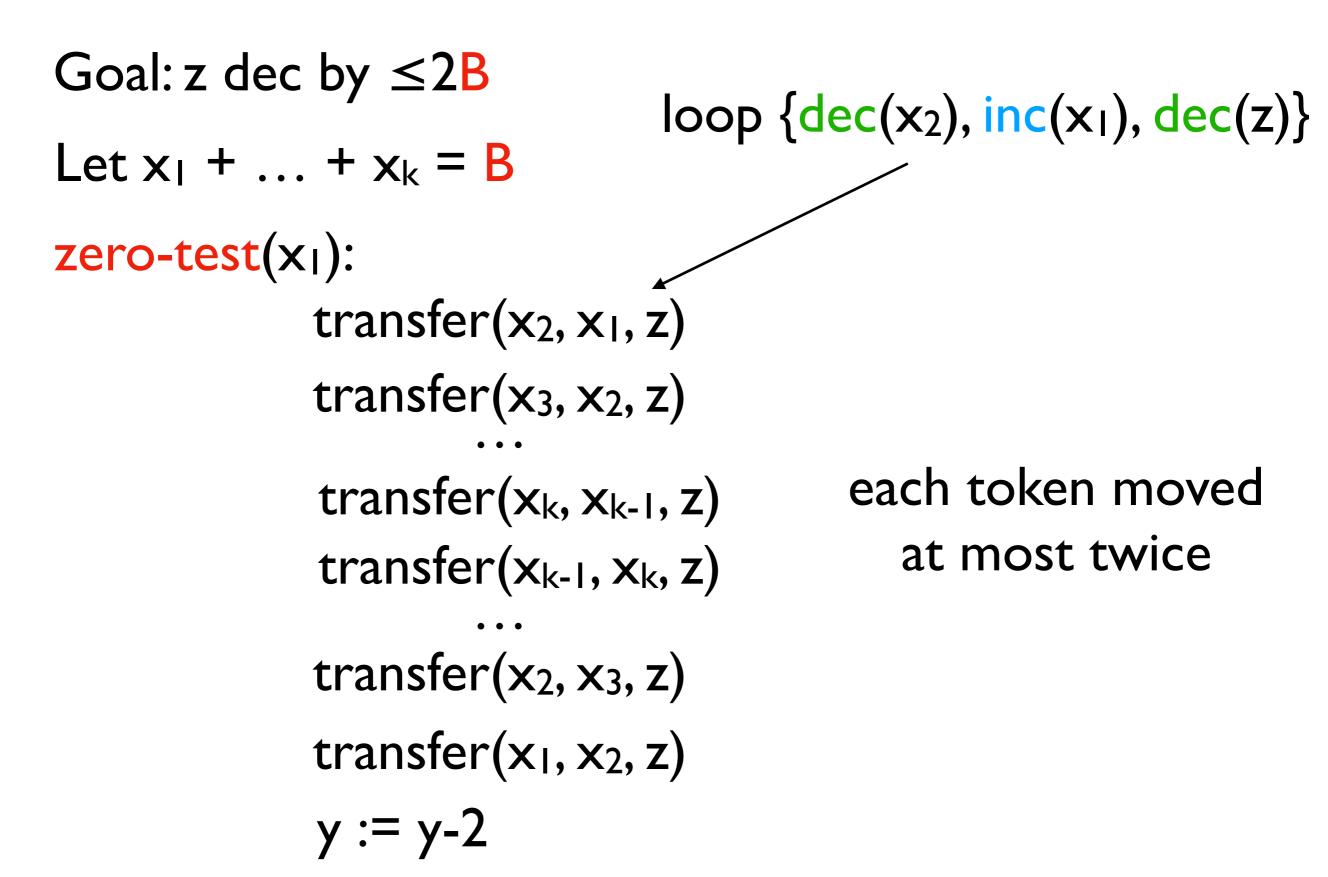


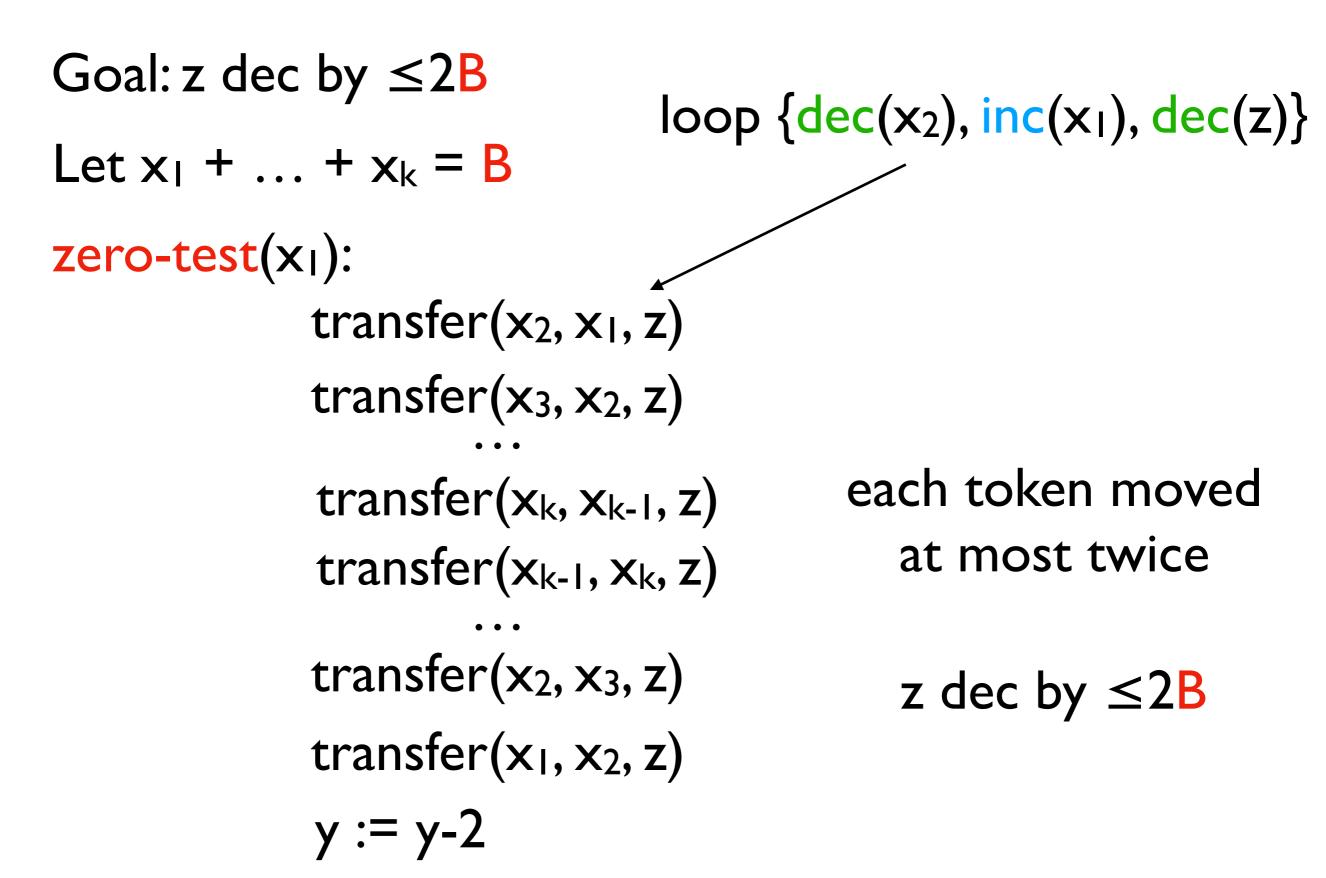




```
Goal: z dec by \leq 2B
                                   loop {dec(x_2), inc(x_1), dec(z)}
Let x_1 + ... + x_k = B
zero-test(x<sub>1</sub>):
               transfer(x_2, x_1, z)
               transfer(x_3, x_2, z)
               transfer(x_k, x_{k-1}, z)
               transfer(x_{k-1}, x_k, z)
               transfer(x_2, x_3, z)
               transfer(x_1, x_2, z)
```

```
Goal: z dec by \leq 2B
                                   loop {dec(x_2), inc(x_1), dec(z)}
Let x_1 + ... + x_k = B
zero-test(x<sub>1</sub>):
               transfer(x_2, x_1, z)
               transfer(x_3, x_2, z)
               transfer(x_k, x_{k-1}, z)
               transfer(x_{k-1}, x_k, z)
               transfer(x_2, x_3, z)
               transfer(x_1, x_2, z)
               y := y-2
```



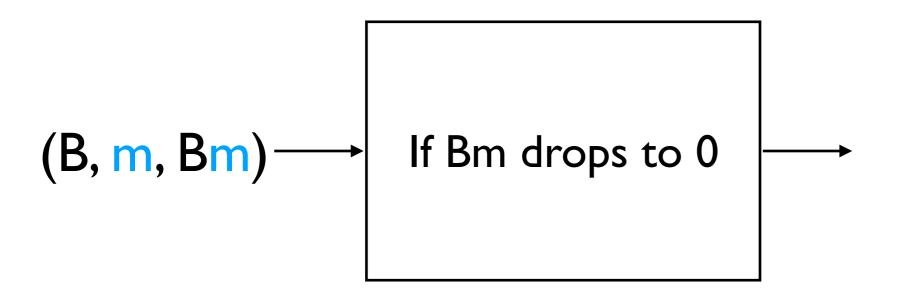


Lemma If there is a d-VASS such that

Lemma If there is a d-VASS such that

(B, m, Bm)

Lemma If there is a d-VASS such that



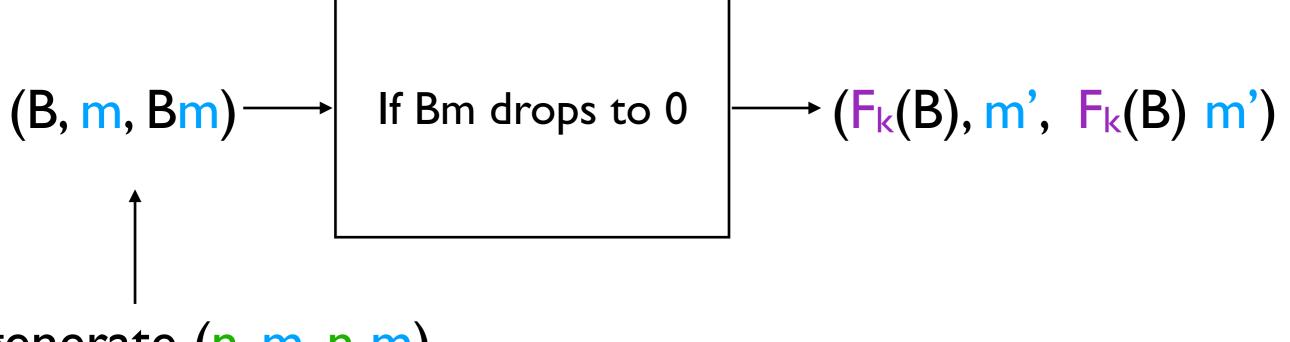
Lemma If there is a d-VASS such that

$$(B, m, Bm) \longrightarrow If Bm drops to 0 \longrightarrow (F_k(B), m', F_k(B) m')$$

Lemma If there is a d-VASS such that

$$(B, m, Bm) \longrightarrow \text{If Bm drops to 0} \longrightarrow (F_k(B), m', F_k(B) m')$$

Lemma If there is a d-VASS such that

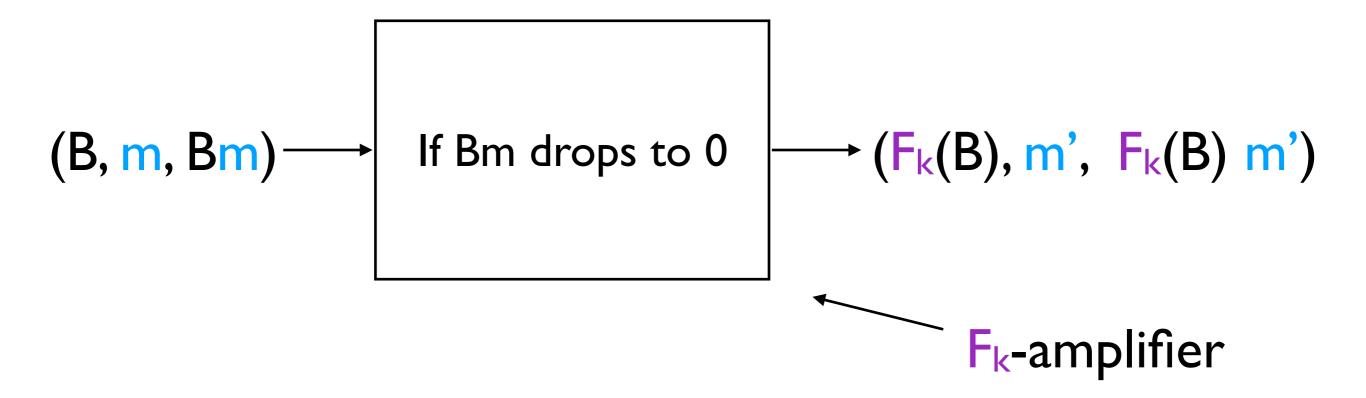


generate (n, m, n m)

Lemma If there is a d-VASS such that

$$(B, m, Bm) \longrightarrow \text{If Bm drops to 0} \longrightarrow (F_k(B), m', F_k(B) m')$$

Lemma If there is a d-VASS such that



Lemma

 F_k -amplifiers of dimension 3k+2 exist.

Lemma

F_k -amplifiers of dimension 3k+2 exist.

Proof idea: induction on k

Lemma F_k -amplifiers of dimension 3k+2 exist.

Proof idea: induction on k

To get F_k -amplifier apply n times F_{k-1} -amplifier

Goal: find algorithm computing $(F_k(n), m, F_k(n), m)$

Goal: find algorithm computing $(F_k(n), m, F_k(n), m)$ from algorithm computing $(F_{k-1}(n), m, F_{k-1}(n), m)$

Goal: find algorithm computing $(F_k(n), m, F_k(n), m)$ from algorithm computing $(F_{k-1}(n), m, F_{k-1}(n), m)$

$$F_{k}(n) = F_{k-1} \circ ... \circ F_{k-1}(1)$$

Goal: find algorithm computing $(F_k(n), m, F_k(n), m)$ from algorithm computing $(F_{k-1}(n), m, F_{k-1}(n), m)$

$$F_{k}(n) = F_{k-1} \circ ... \circ F_{k-1}(1)$$

Idea:

Goal: find algorithm computing $(F_k(n), m, F_k(n), m)$ from algorithm computing $(F_{k-1}(n), m, F_{k-1}(n), m)$

 $F_{k}(n) = F_{k-1} \circ ... \circ F_{k-1}(1)$

Idea: start from triple (I, m, m)

Goal: find algorithm computing $(F_k(n), m, F_k(n), m)$ from algorithm computing $(F_{k-1}(n), m, F_{k-1}(n), m)$

$$F_{k}(n) = F_{k-1} \circ ... \circ F_{k-1}(1)$$

Idea: start from triple (I, m, m) n times apply F_{k-1} to I

(B, m, Bm) gives B/2 zero-tests on m-bounded counters

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m')

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (1, M, M)

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (I, M, M)

repeat B/12 times:

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (I, M, M)

repeat B/I2 times: apply (x, y, z) F_{k-1} -amplifier (x', y', z')

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (I, M, M)

repeat B/12 times: apply $(x, y, z) \xrightarrow{F_{k-1}-amplifier} (x', y', z')$ zero-test x, y, z

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (I, M, M)

repeat B/12 times: apply (x, y, z)zero-test x, y, z transfer back x' to x, y' to y, z' to z

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (I, M, M)

repeat B/12 times: apply (x, y, z) $\xrightarrow{F_{k-1}-amplifier}$ (x', y', z')zero-test x, y, z transfer back x' to x, y' to y, z' to z zero-test x', y', z'

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (I, M, M)

repeat B/12 times: apply (x, y, z) $\xrightarrow{F_{k-1}-amplifier}$ (x', y', z')zero-test x, y, z transfer back x' to x, y' to y, z' to z zero-test x', y', z'

we have $(x, y, z) = (F_k(B), m', F_k(B) m')$

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (I, M, M)

repeat B/12 times: apply (x, y, z)zero-test x, y, z F'_k-amplifiers transfer back x' to x, y' to y, z' to z zero-test x', y', z'

we have $(x, y, z) = (F_k(B), m', F_k(B) m')$

(B, m, Bm) gives B/2 zero-tests on m-bounded counters goal: ($F_k(B)$, m', $F_k(B)$ m') guess (I, M, M)

repeat B/12 times: apply (x, y, z) $\xrightarrow{F_{k-1}-amplifier}$ (x', y', z')zero-test x, y, z transfer back x' to x, y' to y, z' to z zero-test x', y', z'

we have $(x, y, z) = (F_k(B), m', F_k(B) m')$

• reachability for 3-VASSes (Tower? PSpace?)

- reachability for 3-VASSes (Tower? PSpace?)
- \mathbb{F}_d -hardness in dimension d+C (in \mathbb{F}_d for d-4)?

- reachability for 3-VASSes (Tower? PSpace?)
- \mathbb{F}_d -hardness in dimension d+C (in \mathbb{F}_d for d-4)?
- reachability for pushdown VASSes (decidable?)

- reachability for 3-VASSes (Tower? PSpace?)
- \mathbb{F}_d -hardness in dimension d+C (in \mathbb{F}_d for d-4)?
- reachability for pushdown VASSes (decidable?)
- hyper-Ackermann-hardness for pushdown VASSes?

- reachability for 3-VASSes (Tower? PSpace?)
- \mathbb{F}_d -hardness in dimension d+C (in \mathbb{F}_d for d-4)?
- reachability for pushdown VASSes (decidable?)
- hyper-Ackermann-hardness for pushdown VASSes?
- low dimensions

- reachability for 3-VASSes (Tower? PSpace?)
- \mathbb{F}_d -hardness in dimension d+C (in \mathbb{F}_d for d-4)?
- reachability for pushdown VASSes (decidable?)
- hyper-Ackermann-hardness for pushdown VASSes?
- low dimensions

Thank you!