
The Reachability Problem
for Vector Addition Systems

Wojciech Czerwiński

Aalborg 2022

Plan

• basic notions and the problem

Plan

• basic notions and the problem

• short history

Plan

• basic notions and the problem

• short history

• interesting examples

Plan

• basic notions and the problem

• short history

• interesting examples

• decidability (idea)

Plan

• basic notions and the problem

• short history

• interesting examples

• decidability (idea)

• Ackermann-hardness

Plan

• basic notions and the problem

• short history

• interesting examples

• decidability (idea)

• Ackermann-hardness

• open problems

Plan

• basic notions and the problem

• short history

• interesting examples

• decidability (idea)

• Ackermann-hardness

• open problems

• goal: intuitions

Plan

Vector Addition Systems
with States

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

Hopcroft-Pansiot `78

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(1,1,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) p(1,1,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) p(1,1,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7) p(1,1,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7) p(1,1,7)

q(4,0,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7)

p(4,0,6)

p(1,1,7)

q(4,0,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7)

p(4,0,6)

p(1,1,7)

q(4,0,7) Petri nets

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7)

p(4,0,6)

p(1,1,7)

q(4,0,7)

Vector Addition Systems
with States

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) p(0,k,n)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) q(0,k,n) p(0,k,n)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) q(0,k,n) q(2k,0,n) p(0,k,n)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) q(0,k,n) q(2k,0,n) p(2k,0,n-1) p(0,k,n)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) q(0,k,n) q(2k,0,n) p(2k,0,n-1) p(0,k,n)

p(1,0,n)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) q(0,k,n) q(2k,0,n) p(2k,0,n-1) p(0,k,n)

p(1,0,n) p(2,0,n-1)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) q(0,k,n) q(2k,0,n) p(2k,0,n-1) p(0,k,n)

p(1,0,n) p(2,0,n-1) …

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) q(0,k,n) q(2k,0,n) p(2k,0,n-1) p(0,k,n)

p(1,0,n) p(2,0,n-1) … p(2n,0,0)

Reachability problem

Reachability problem

Given: a VASS, two its configurations s and t

Reachability problem

Given: a VASS, two its configurations s and t

Question: is there a run from s to t?

Reachability problem

Given: a VASS, two its configurations s and t

Question: is there a run from s to t?

Question: is there a run from s above t?

Reachability problem

Given: a VASS, two its configurations s and t

Question: is there a run from s to t?

Question: is there a run from s above t?

coverability problem

Short history

Short history

Lipton `76: ExpSpace-hardness of coverability

Short history

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Short history

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

doubly-exponential length paths

Short history

Lipton `76: ExpSpace-hardness of coverability

Rackoff `78: coverability in ExpSpace

Short history

Lipton `76: ExpSpace-hardness of coverability

Mayr `81: decidability of reachability

Rackoff `78: coverability in ExpSpace

Short history

Lipton `76: ExpSpace-hardness of coverability

Mayr `81: decidability of reachability

Kosaraju `82, Lambert `92: simplifications

Rackoff `78: coverability in ExpSpace

Short history

Lipton `76: ExpSpace-hardness of coverability

Mayr `81: decidability of reachability

Kosaraju `82, Lambert `92: simplifications

Rackoff `78: coverability in ExpSpace

Blondin at el. `15: reachability PSpace-complete
for 2-VASSes

Short history

Lipton `76: ExpSpace-hardness of coverability

Mayr `81: decidability of reachability

Kosaraju `82, Lambert `92: simplifications

Rackoff `78: coverability in ExpSpace

Blondin at el. `15: reachability PSpace-complete
for 2-VASSes

exponential length paths

Short history

Lipton `76: ExpSpace-hardness of coverability

Mayr `81: decidability of reachability

Kosaraju `82, Lambert `92: simplifications

Rackoff `78: coverability in ExpSpace

Blondin at el. `15: reachability PSpace-complete
for 2-VASSes

Short history

Short history

Leroux, Schmitz `15: cubic-Ackermann

Short history

Leroux, Schmitz `15: cubic-Ackermann

Leroux, Schmitz `19: Ackermann

Short history

Leroux, Schmitz `15: cubic-Ackermann

Leroux, Schmitz `19: Ackermann

Conjecture: reachability in ExpSpace

Short history

Leroux, Schmitz `15: cubic-Ackermann

Leroux, Schmitz `19: Ackermann

Cz., Lasota, Lazic, Leroux, Mazowiecki `19:
Tower-hardness

Conjecture: reachability in ExpSpace

Short history

Leroux, Schmitz `15: cubic-Ackermann

Leroux, Schmitz `19: Ackermann

Cz., Lasota, Lazic, Leroux, Mazowiecki `19:
Tower-hardness

Leroux & Cz., Orlikowski`21: Ackermann-hardness

Conjecture: reachability in ExpSpace

Functions Fk

Functions Fk

F1(n) = 2n

Functions Fk

F1(n) = 2n Fk+1(n) = Fk ￮…￮ Fk(1)

Functions Fk

F1(n) = 2n Fk+1(n) = Fk ￮…￮ Fk(1)

composed n times

Functions Fk

F1(n) = 2n Fk+1(n) = Fk ￮…￮ Fk(1)

composed n times

F2(n) = 2n

Functions Fk

F1(n) = 2n Fk+1(n) = Fk ￮…￮ Fk(1)

composed n times

F2(n) = 2n F3(n) = Tower(n)

Functions Fk

F1(n) = 2n Fk+1(n) = Fk ￮…￮ Fk(1)

composed n times

F2(n) = 2n F3(n) = Tower(n)

Ack(n) = Fω(n) = Fn(n)

Hard examples

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

(1,0,0)

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

p(1,0,n)

(1,0,0)

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

p(1,0,n) q(2n,0,0)

(1,0,0)

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

p(1,0,n) q(2n,0,0) r(2n,0,0)

(1,0,0)

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

p(1,0,n) q(2n,0,0) r(2n,0,0)

(1,0,0)

r(0,0,2n)

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

p(1,0,n) q(2n,0,0) r(2n,0,0)

(1,0,0)

r(0,0,2n)

p’(1,0,2n)

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

p(1,0,n) q(2n,0,0) r(2n,0,0)

(1,0,0)

r(0,0,2n)

p’(1,0,2n) q’(,0,0)
n22

Hard examples
(0,0,-1)

(-1,1,0) (2,-1,0)qp

(-1,0,1)r

(0,0,-1)
(-1,1,0) (2,-1,0)q’p’

p(1,0,n) q(2n,0,0) r(2n,0,0)

(1,0,0)

r(0,0,2n)

p’(1,0,2n) q’(,0,0)
n22

finite doubly-exponential reachability set

Hard examples

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r(1,0,0,-1)

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n)

(1,0,0,-1)

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1)

(1,0,0,-1)

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1)

(1,0,0,-1)

…

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1)

(1,0,0,-1)

… p(Tower(n),0,1,0)

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1)

finite tower-size reachability set

(1,0,0,-1)

… p(Tower(n),0,1,0)

Hard examples

(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(21,0,1,n-1)

finite tower-size reachability set

(1,0,0,-1)

… p(Tower(n),0,1,0)

finite Fd-size reachability set

Decidability idea

Decidability idea

Question: does p(s) q(t)?

Decidability idea

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

Decidability idea

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

Linear equations (in NP)

Decidability idea

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

Decidability idea

Assume:

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

Decidability idea

Assume: p(s) p(s+Δ)

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

Decidability idea

Assume: p(s) p(s+Δ) q(t+Δ) q(t)

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

Decidability idea

Assume: p(s) p(s+Δ) q(t+Δ) q(t)

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

with Δ ≥ 1

Decidability idea

Assume: p(s) p(s+Δ) q(t+Δ) q(t)

Then:

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

with Δ ≥ 1

Decidability idea

Assume: p(s) p(s+Δ) q(t+Δ) q(t)

Then:

Question: does p(s) q(t)?

Idea: reachability in ℤ is easy!

p(s) q(t)ℤ

with Δ ≥ 1

Decidability idea

Assume: p(s) p(s+Δ) q(t+Δ) q(t)

Then:

Question: does p(s) q(t)?

implies

Idea: reachability in ℤ is easy!

p(s) q(t)ℤ

with Δ ≥ 1

Decidability idea

Assume: p(s) p(s+Δ) q(t+Δ) q(t)

Then:

Question: does p(s) q(t)?

p(s) q(t)implies

Idea: reachability in ℤ is easy!

p(s) q(t)ℤ

with Δ ≥ 1

Decidability idea

Decidability idea
Then:

Decidability idea
Then: p(s) q(t)ℤ

Decidability idea
Then: impliesp(s) q(t)ℤ

Decidability idea
Then: p(s) q(t)impliesp(s) q(t)ℤ

Decidability idea
Then: p(s) q(t)impliesp(s) q(t)ℤ

Decidability idea
Then: p(s) q(t)impliesp(s) q(t)ℤ

Decidability idea
Then: p(s) q(t)impliesp(s) q(t)ℤ

Decidability idea
Then: p(s) q(t)impliesp(s) q(t)ℤ

+nΔ

Decidability idea
Then: p(s) q(t)impliesp(s) q(t)ℤ

+nΔ

Decidability idea
Then: p(s) q(t)impliesp(s) q(t)ℤ

+nΔ

-nΔ

Decidability idea

Decidability idea
Assume:

Decidability idea
Assume: p(s) p(s+Δ1)

Decidability idea
Assume: p(s) p(s+Δ1) q(t+Δ2) q(t)

Decidability idea
Assume: p(s) p(s+Δ1) q(t+Δ2) q(t)

Then:

Decidability idea
Assume: p(s) p(s+Δ1) q(t+Δ2) q(t)

Then:

p(s) q(t)ℤ

Decidability idea
Assume: p(s) p(s+Δ1) q(t+Δ2) q(t)

Then:

p(s) q(t)ℤ by runs using each transition many times

Decidability idea
Assume: p(s) p(s+Δ1) q(t+Δ2) q(t)

Then:

implies

p(s) q(t)ℤ by runs using each transition many times

Decidability idea
Assume: p(s) p(s+Δ1) q(t+Δ2) q(t)

Then:

p(s) q(t)implies

p(s) q(t)ℤ by runs using each transition many times

Decidability idea
Assume: p(s) p(s+Δ1) q(t+Δ2) q(t)

Then:

p(s) q(t)implies

p(s) q(t)ℤ by runs using each transition many times

Why?

Decidability idea
Assume: p(s) p(s+Δ1) q(t+Δ2) q(t)

Then:

p(s) q(t)implies

p(s) q(t)ℤ by runs using each transition many times

Why? p(s) p(s+Δ2-Δ1)ℤ

Decidability idea

Decidability idea
p(s) p(s+Δ1)

Decidability idea
p(s) p(s+Δ1) q(t+Δ2) q(t)

Decidability idea
p(s) p(s+Δ1) q(t+Δ2) q(t) p(s) p(s+Δ2-Δ1)ℤ

Decidability idea
p(s) p(s+Δ1) q(t+Δ2) q(t) p(s) p(s+Δ2-Δ1)ℤ

Decidability idea
p(s) p(s+Δ1) q(t+Δ2) q(t) p(s) p(s+Δ2-Δ1)ℤ

Decidability idea

+nΔ1

p(s) p(s+Δ1) q(t+Δ2) q(t) p(s) p(s+Δ2-Δ1)ℤ

Decidability idea

+nΔ1

+n(Δ2-Δ1)

p(s) p(s+Δ1) q(t+Δ2) q(t) p(s) p(s+Δ2-Δ1)ℤ

Decidability idea

+nΔ1

+n(Δ2-Δ1)

p(s) p(s+Δ1) q(t+Δ2) q(t) p(s) p(s+Δ2-Δ1)ℤ

Decidability idea

+nΔ1

-nΔ2

+n(Δ2-Δ1)

p(s) p(s+Δ1) q(t+Δ2) q(t) p(s) p(s+Δ2-Δ1)ℤ

Algorithm

Algorithm
Check whether:

Algorithm

p(s) p(s+Δ1)

Check whether:

Algorithm

p(s) p(s+Δ1) q(t+Δ2) q(t)

Check whether:

Algorithm

p(s) p(s+Δ1) q(t+Δ2) q(t)

Check whether:

p(s) q(t)ℤ by runs using each transition many times

Algorithm

p(s) p(s+Δ1) q(t+Δ2) q(t)

Check whether:

p(s) q(t)ℤ by runs using each transition many times

If yes then return YES

Algorithm

p(s) p(s+Δ1) q(t+Δ2) q(t)

Check whether:

p(s) q(t)ℤ by runs using each transition many times

If yes then return YES

If no then simplify

Algorithm

p(s) p(s+Δ1) q(t+Δ2) q(t)

Check whether:

p(s) q(t)ℤ by runs using each transition many times

If yes then return YES

If no then simplify

Involved!

Ackermann-hardness

Ackermann-hardness

The Reachability Problem for (3k+2)-VASSes is 𝔽k-hard.
Theorem

Ackermann-hardness

The Reachability Problem for (3k+2)-VASSes is 𝔽k-hard.
Theorem

Sławomir Lasota

Ackermann-hardness

The Reachability Problem for (3k+2)-VASSes is 𝔽k-hard.
Theorem

Sławomir Lasota

Cz., Łukasz Orlikowski: 6k

Ackermann-hardness

The Reachability Problem for (3k+2)-VASSes is 𝔽k-hard.
Theorem

Sławomir Lasota

Cz., Łukasz Orlikowski: 6k

Jerome Leroux (currently): 2k+4

Big counters

Big counters

The following problem is 𝔽k-complete (k ≥ 3)

Big counters

Given:

The following problem is 𝔽k-complete (k ≥ 3)

Big counters

Given:

The following problem is 𝔽k-complete (k ≥ 3)

a two-counter automaton A
with zero-tests, number n

Big counters

Given:

The following problem is 𝔽k-complete (k ≥ 3)

a two-counter automaton A
with zero-tests, number n

Question:

Big counters

Given:

The following problem is 𝔽k-complete (k ≥ 3)

a two-counter automaton A
with zero-tests, number n

Question: does A have an Fk(n)-bounded run?

Multiplication triples

Multiplication triples

If for each n there is a d-VASS with
transitions of size ≤ n such that

Lemma

Multiplication triples

If for each n there is a d-VASS with
transitions of size ≤ n such that

Lemma

arbitrary big m guessed
some counters reach 0

Multiplication triples

If for each n there is a d-VASS with
transitions of size ≤ n such that

Lemma

arbitrary big m guessed
some counters reach 0 (Fk(n), m, Fk(n) m)

Multiplication triples

If for each n there is a d-VASS with
transitions of size ≤ n such that

Lemma

arbitrary big m guessed
some counters reach 0 (Fk(n), m, Fk(n) m)

then reachability for d-VASSes is Fk-hard

Multiplication triples

If for each n there is a d-VASS with
transitions of size ≤ n such that

Lemma

arbitrary big m guessed
some counters reach 0 (Fk(n), m, Fk(n) m)

then reachability for d-VASSes is Fk-hard

Proof: simulate Fk(n)-bounded run

Triples

Triples
Triples (B, m, Bm) allow zero-testing

Triples
Triples (B, m, Bm) allow zero-testing

for m/2 zero-tests on B-bounded counters

Triples
Triples (B, m, Bm) allow zero-testing

for m/2 zero-tests on B-bounded counters

Goal: compute (Fk(n), m, Fk(n) m)

Triples
Triples (B, m, Bm) allow zero-testing

for m/2 zero-tests on B-bounded counters

Goal: compute (Fk(n), m, Fk(n) m)

For k = 1 easy: (2n, 0, 0) + m(0, 1, 2n)

Triples

Triples
Assume (x, y, z) = (B, m, Bm)

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0keep x+x’ = B

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

zero-test(x’):

keep x+x’ = B

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

zero-test(x’):

loop {inc(x’), dec(x), dec(z)}

keep x+x’ = B

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

zero-test(x’):

loop {inc(x’), dec(x), dec(z)}

loop {dec(x’), inc(x), dec(z)}

keep x+x’ = B

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

zero-test(x’):

loop {inc(x’), dec(x), dec(z)}

y := y-2

loop {dec(x’), inc(x), dec(z)}

keep x+x’ = B

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

zero-test(x’):

loop {inc(x’), dec(x), dec(z)}

y := y-2

loop {dec(x’), inc(x), dec(z)}y dec by 2

keep x+x’ = B

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

zero-test(x’):

loop {inc(x’), dec(x), dec(z)}

y := y-2

loop {dec(x’), inc(x), dec(z)}y dec by 2

z dec by ≤2B

keep x+x’ = B

Triples
Assume (x, y, z) = (B, m, Bm)

Let x’ = 0

zero-test(x’):

loop {inc(x’), dec(x), dec(z)}

y := y-2

At the end check if z = 0

loop {dec(x’), inc(x), dec(z)}y dec by 2

z dec by ≤2B

keep x+x’ = B

Testing more counters

Testing more counters
Goal: z dec by ≤2B

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

loop {dec(x2), inc(x1), dec(z)}

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)
transfer(xk-1, xk, z)

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)
transfer(xk-1, xk, z)

…

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)

transfer(x2, x3, z)

transfer(xk-1, xk, z)
…

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)

transfer(x1, x2, z)
transfer(x2, x3, z)

transfer(xk-1, xk, z)
…

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

y := y-2

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)

transfer(x1, x2, z)
transfer(x2, x3, z)

transfer(xk-1, xk, z)
…

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

y := y-2

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)

transfer(x1, x2, z)
transfer(x2, x3, z)

transfer(xk-1, xk, z)
…

each token moved
at most twice

Testing more counters
Goal: z dec by ≤2B

Let x1 + … + xk = B

zero-test(x1):
transfer(x2, x1, z)

y := y-2

loop {dec(x2), inc(x1), dec(z)}

transfer(x3, x2, z)…
transfer(xk, xk-1, z)

transfer(x1, x2, z)
transfer(x2, x3, z)

transfer(xk-1, xk, z)
…

each token moved
at most twice

z dec by ≤2B

Triples

Triples

If there is a d-VASS such that
Lemma

Triples

If there is a d-VASS such that
Lemma

(B, m, Bm)

Triples

If there is a d-VASS such that
Lemma

If Bm drops to 0(B, m, Bm)

Triples

If there is a d-VASS such that
Lemma

If Bm drops to 0(B, m, Bm) (Fk(B), m’, Fk(B) m’)

Triples

If there is a d-VASS such that
Lemma

If Bm drops to 0(B, m, Bm) (Fk(B), m’, Fk(B) m’)

then reachability for d-VASSes is Fk-hard.

Triples

If there is a d-VASS such that
Lemma

If Bm drops to 0(B, m, Bm) (Fk(B), m’, Fk(B) m’)

then reachability for d-VASSes is Fk-hard.

generate (n, m, n m)

Triples

If there is a d-VASS such that
Lemma

If Bm drops to 0(B, m, Bm) (Fk(B), m’, Fk(B) m’)

then reachability for d-VASSes is Fk-hard.

Triples

If there is a d-VASS such that
Lemma

If Bm drops to 0(B, m, Bm) (Fk(B), m’, Fk(B) m’)

then reachability for d-VASSes is Fk-hard.

Fk-amplifier

Amplifiers

Amplifiers
Lemma
Fk-amplifiers of dimension 3k+2 exist.

Amplifiers
Lemma
Fk-amplifiers of dimension 3k+2 exist.

Proof idea: induction on k

Amplifiers
Lemma
Fk-amplifiers of dimension 3k+2 exist.

Proof idea: induction on k

To get Fk-amplifier apply n times Fk-1-amplifier

General strategy

General strategy

Goal: find algorithm computing (Fk(n), m, Fk(n) m)

General strategy

Goal: find algorithm computing (Fk(n), m, Fk(n) m)

from algorithm computing (Fk-1(n), m, Fk-1(n) m)

General strategy

Goal: find algorithm computing (Fk(n), m, Fk(n) m)

from algorithm computing (Fk-1(n), m, Fk-1(n) m)

Fk(n) = Fk-1 ￮…￮ Fk-1(1)

General strategy

Goal: find algorithm computing (Fk(n), m, Fk(n) m)

from algorithm computing (Fk-1(n), m, Fk-1(n) m)

Fk(n) = Fk-1 ￮…￮ Fk-1(1)

Idea:

General strategy

Goal: find algorithm computing (Fk(n), m, Fk(n) m)

from algorithm computing (Fk-1(n), m, Fk-1(n) m)

Fk(n) = Fk-1 ￮…￮ Fk-1(1)

Idea: start from triple (1, m, m)

General strategy

Goal: find algorithm computing (Fk(n), m, Fk(n) m)

from algorithm computing (Fk-1(n), m, Fk-1(n) m)

Fk(n) = Fk-1 ￮…￮ Fk-1(1)

Idea: start from triple (1, m, m)

n times apply Fk-1 to 1

Fk-amplifiers

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)

repeat B/12 times:

goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)

repeat B/12 times:
apply (x, y, z) (x’, y’, z’)

Fk-1-amplifier

goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)

repeat B/12 times:
apply (x, y, z) (x’, y’, z’)

Fk-1-amplifier

zero-test x, y, z

goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)

repeat B/12 times:
apply (x, y, z) (x’, y’, z’)

Fk-1-amplifier

zero-test x, y, z

transfer back x’ to x, y’ to y, z’ to z

goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)

repeat B/12 times:
apply (x, y, z) (x’, y’, z’)

Fk-1-amplifier

zero-test x, y, z

transfer back x’ to x, y’ to y, z’ to z

zero-test x’, y’, z’

goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)

repeat B/12 times:
apply (x, y, z) (x’, y’, z’)

Fk-1-amplifier

zero-test x, y, z

transfer back x’ to x, y’ to y, z’ to z

zero-test x’, y’, z’

we have (x, y, z) = (Fk(B), m’, Fk(B) m’)

goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)

repeat B/12 times:
apply (x, y, z) (x’, y’, z’)

Fk-1-amplifier

zero-test x, y, z

transfer back x’ to x, y’ to y, z’ to z

zero-test x’, y’, z’

we have (x, y, z) = (Fk(B), m’, Fk(B) m’)

F’k-amplifiers

goal: (Fk(B), m’, Fk(B) m’)

Fk-amplifiers
(B, m, Bm) gives B/2 zero-tests on m-bounded counters

guess (1, M, M)

repeat B/12 times:
apply (x, y, z) (x’, y’, z’)

Fk-1-amplifier

zero-test x, y, z

transfer back x’ to x, y’ to y, z’ to z

zero-test x’, y’, z’

we have (x, y, z) = (Fk(B), m’, Fk(B) m’)

goal: (Fk(B), m’, Fk(B) m’)

Open problems

• reachability for 3-VASSes (Tower? PSpace?)

Open problems

• reachability for 3-VASSes (Tower? PSpace?)

• 𝔽d-hardness in dimension d+C (in 𝔽d for d-4)?

Open problems

• reachability for 3-VASSes (Tower? PSpace?)

• 𝔽d-hardness in dimension d+C (in 𝔽d for d-4)?

• reachability for pushdown VASSes (decidable?)

Open problems

• reachability for 3-VASSes (Tower? PSpace?)

• 𝔽d-hardness in dimension d+C (in 𝔽d for d-4)?

• reachability for pushdown VASSes (decidable?)

• hyper-Ackermann-hardness for pushdown VASSes?

Open problems

• reachability for 3-VASSes (Tower? PSpace?)

• 𝔽d-hardness in dimension d+C (in 𝔽d for d-4)?

• reachability for pushdown VASSes (decidable?)

• hyper-Ackermann-hardness for pushdown VASSes?

• low dimensions

Open problems

• reachability for 3-VASSes (Tower? PSpace?)

• 𝔽d-hardness in dimension d+C (in 𝔽d for d-4)?

• reachability for pushdown VASSes (decidable?)

• hyper-Ackermann-hardness for pushdown VASSes?

• low dimensions

Open problems

Thank you!

