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Leroux, Schmitz " |5; cubic-Aclkermann

Leroux, Schmitz " 19: Ackermann
Conjecture: reachability in ExpSpace

Cz., Lasota, Lazic, Leroux, Mazowiecki |9:
Tower-hardness

Leroux & Cz., Orlikowski 21: Ackermann-hardness
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Functions Fi

Fl(n) = 2n F|<+I(n) = Fro...0 Fk(l)

composed n times

F2(n) =2 F3(n) = Tower(n)

Ack(n) = Fw(n) = Fn(n)
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(0,0,- I%(z,- 00

5)E1,0,1,0)

p(1,0,1,n) — p(2',0,1,n-1) ... — p(Tower(n),0,1,0)

(-1,1,0,0)

(1,0,0,-1)

finite reachability set

finite Fq reachability set
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Assume:  p(s) —p(s+2)  q(t+Lo)— q(t)

Then:

p(s) L, q(t) by runs using each transition many times

implies p(s) — q(t)

Why? p(s) —v p(s+lo-A))
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Algorithm

Check whether:

p(s) —p(stL) q(t+22)— q(t)

D(s) L, q(t) by runs using each transition many times

If yes then return YES

If no then simplify

Involved!
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Ackermann-hardness

Theorem
The Reachability Problem for (3k+2)-VASSes is

Stawomir Lasota

Cz., tukasz Orlikowski: 61<

Jerome Leroux (currently): 2k+4

J‘k-hal"d.
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Big counters

The following problem is F-complete (k = 3)

Given: a two-counter automaton A
with zero-tests, number n

Question: does A have an Fi(n)-bounded run!?
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Multiplication triples

Lemma

If for each n there is a d-VASS with
transitions of size < n such that

arbitrary big m guessed
some counters reach O

— (Fx(n), m, Fi(n) m)

then reachability for d-VASSes is Fr-hard

Proof: simulate Fr(n)-bounded run
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Triples
Triples (B, m, Bm) allow zero-testing

for m/2 zero-tests on B-bounded counters
Goal: compute (Fi(n), m, Fi(n) m)

For k = | easy: (2n,0,0) + m(0, |, 2n)
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Assume (X, Y, z) = (B, m, Bm)
keep x+x' = B Let X’ = 0
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Triples

Assume (X, Y, z) = (B, m, Bm)
keep x+x' = B Let X’ = 0
zero-test(x’):
loop {inc(x’), dec(x), dec(z)}
y dec by 2 loop {dec(x’), inc(x), dec(z)}
z dec by <2B y ;= y-2

At the end check ifz=0
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Testing more counters

Goal: z dec by <2B |
loop {dec(x2), inc(xi), dec(z)}

LetX| + c oo + Xk — B

zero-test(x|): /
transfer(xz, x|, z)
transfer(xs, x2, z)

transfer(xy, Xk-1, z) each token moved
transfer(X-1, Xk, z) at most twice
transfer(xz, x3, z) 7 dec by <2B

transfer(xi, x2, z)
y = y-2
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Triples

Lemma
If there is a d-VASS such that

(B, m, Bm)——| If Bm drops to 0 > (Fi(B), m’, F(B) m’)

\
Fr-amplifier

then reachability for d-VASSes is Fr-hard.
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Lemma
Fr-amplifiers of dimension 3k+2 exist.

Proof idea: induction on k

To get Fr-amplifier apply n times Fi.;-amplifier



General strategy



General strategy

Goal: find algorithm computing (Fi(n), m, Fi(n) m)



General strategy

Goal: find algorithm computing (Fi(n), m, Fi(n) m)

from algorithm computing (Fi-1(n), m, Fi.1(n) m)



General strategy

Goal: find algorithm computing (Fi(n), m, Fi(n) m)

from algorithm computing (Fi-1(n), m, Fi.1(n) m)

Fk(n) = Fi.1o o Fk-|(|)



General strategy

Goal: find algorithm computing (Fi(n), m, Fi(n) m)

from algorithm computing (Fi-1(n), m, Fi.1(n) m)

Fk(n) = Fi.1o o Fk-|(|)

|dea:



General strategy

Goal: find algorithm computing (Fi(n), m, Fi(n) m)

from algorithm computing (Fi-1(n), m, Fi.1(n) m)

Fk(n) = Fi.1o o Fk-|(|)

|dea: start from triple (1, m, m)



General strategy

Goal: find algorithm computing (Fi(n), m, Fi(n) m)

from algorithm computing (Fi-1(n), m, Fi.1(n) m)

Fk(n) = Fi.1o o Fk-|(|)

|dea: start from triple (1, m, m)

n times apply Fr.j to |
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Open problems

reachability for 3-VASSes (Tower?! PSpace?)

F4-hardness in dimension d+C (in [F4 for d-4)?

reachability for pushdown VASSes (decidable?)
hyper-Ackermann-hardness for pushdown VASSes?

low dimensions

Thank you!



