
Reactive Synthesis

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 

Nir Piterman
University of Gothenburg

Aalborg, June 13, 2022



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 3

Programming

function

function

A function defines a relation between inputs and outputs.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 4

Doesn’t quite work …



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 5

Computation vs. Reactivity



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 6

Reactive Systems

• Systems whose main aim is to interact rather than compute (OS, driver, CPU, car 
controller).

• Main complexity is in maintaining communication with a user / another program / 
the environment.

• Reactive systems are notoriously hard to design.
• Major efforts are invested in development and validation of reactive systems.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 7

The Requirement Language

• Correctness of computational programs is expressed as Hoare triples.
𝑃 𝐶{𝑄}

• Correctness of reactive programs is expressed as behavioral specifications:
– The behavior of a system is a sequence of system states.
– Specification should tell us when a sequence is good/bad.
– We use temporal logic: connect states through time.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 8

Validating Reactive Systems

• Simulations:
– Run the system and check whether behavior satisfies specifications.

• Model checking:
– Create a comprehensive model of the system and check whether all behaviors

satisfy specifications.
• Model checking research:
– Automatic construction of models.

• Predicate extraction.
• Heap analysis.
• Counter-example guided abstraction refinement.

– Techniques for model exploration.
• Efficient enumerative graph exploration.
• Symbolic representation of states.
• Bounded model checking and SAT/SMT solving.

– Specification.
• Expressive specification languages.
• Translation to model exploration.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 9

Synthesis

• Developing systems is hard, expensive, and error prone.
• The common solution is extensive testing and verification.
• If we can verify, why not go directly from specification to correct-by-construction

systems by synthesis?
• Church’s synthesis problem:

Given a circuit interface specification and a behavioral specification:
– Determine if there is an automaton that realizes the specification.
– If the specification is realizable, construct an implementing automaton.

• Circuit interface – partition to inputs and outputs.
• Behavioral specification – description in first order logic.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 10

Synthesis from Temporal Specifications

• Is it possible to realize this specification?
• The formula defines a relation between i: ℕ → {0,1} and 
o1, o2: ℕ → {0,1}

• We want a function that is a subset. 

i

o1

o2

∀𝑡. ¬𝑜1 𝑡 ∨ ¬𝑜2 𝑡

∀𝑡. 𝑖 𝑡 → ∃𝑡′ > 𝑡. 𝑜1 𝑡 ∨ 𝑜2 𝑡

∀𝑡. 𝑜1 𝑡 → ∃𝑡′ < 𝑡. 𝑖 𝑡′ ∧ ∀𝑡′ < 𝑡′′ < 𝑡. ¬𝑜1 𝑡′′ ∧ ¬𝑜2 𝑡′′

∀𝑡. 𝑜2 𝑡 → ∃𝑡′ < 𝑡. 𝑖 𝑡′ ∧ ∀𝑡′ < 𝑡′′ < 𝑡. ¬𝑜1 𝑡′′ ∧ ¬𝑜2 𝑡′′

∀𝑡. 𝑜1 𝑡 → ∀𝑡′ > 𝑡. ¬ 𝑜1 𝑡′ ∨ ∃𝑡 < 𝑡′′ < 𝑡′. 𝑜2 𝑡′′

∀𝑡. 𝑜1 𝑡 → ∀𝑡′ > 𝑡. ¬ 𝑜2 𝑡′ ∨ ∃𝑡 < 𝑡′′ < 𝑡′. 𝑜1 𝑡′′



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 11

Causal

• The relation 𝑅 = 𝑖, 𝑜 𝑖: ℕ → 0,1 , 𝑜: ℕ → 0,1 , 𝑜 0 ↔ (∃𝑡. 𝑖 𝑡 )} is not empty.
• Find a function that implements it.
• The function cannot be clairvoyant.
• It needs to be causal: o n = f i ∣ 0,…,𝑛

𝑜 0 ↔ (∃𝑡. 𝑖 𝑡 )



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 12

Adversarial

• There are some input sequences for which this is possible.
• But not all!
• We want a function that can answer all input sequences.

𝑓: 𝑖: 0, … , 𝑛 → 0,1 𝑛 ∈ ℕ → {0,1}

• Furthermore, for every i: ℕ → {0,1} the unique o:ℕ → 0,1 such that o n = f(i ∣ 0,…,𝑛 ) for 
every 𝑛 ∈ ℕ satisfies the specification.

∀𝑡. 𝑖 𝑡 → ¬𝑜 𝑡
∀𝑡. 𝑖 𝑡 → ∃𝑡′ > 𝑡. 𝑜(𝑡′)



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 13

Brief History

• Church’s problem [1965].
• Rabin introduces automata on infinite trees. Effectively, generalizing Büchi’s work on 

ω-automata to trees [1969].
• Büchi and Landweber define two-player games of infinite duration [1969].
• We now know that the two are effectively the same. These are still the techniques we 

use to solve the problem.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 14

Modern Times

• Pnueli introduces linear temporal logic [1977].
• Emerson and Clarke and Quielle and Sifakis invent model checking [1981].
• Emerson and Clarke and Manna and Wolper ignore adversarial nature and propose 

reduction to satisfiability [1984].
• Pnueli and Rosner establish LTL realizability to be 2EXPTIME-complete.
– This result established realizability and synthesis as highly intractable.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 15

In these Lectures

• Synthesis as a game.
• Simple games (safety, reachability, Büchi).
• LTL Synthesis reduced to solution of parity games.
• Bypassing determinization:
– Safraless approach.
– Restricting the specification langauge.
– Usage of synthesis in robotics.

• Current research direcions:
– Distributed synthesis.
– Safety of learned behaviour.
– Strategic reasoning.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 16

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Current Research Directions



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 17

A More Formal Context

• A specification in linear temporal logic over input and output propositions.
• A system will be an automaton with output.
• Input and output are combined to create a sequences of assignments to propositions.
• All possible infinite paths over the automaton should satisfy the specification.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 18

Linear Temporal Logic

• A set of propositions (𝒫𝑟𝑜𝑝) denoting the basic facts about the world. Set 𝒫𝑟𝑜𝑝 is 
partitioned to inputs ℐ and outputs 𝒪.

• Linear Temporal Logic formulae are constructed as follows:

• Other temporal formulae are derived:
–

–

–

–

–

–

– Eventually.
– Always.
– Weak Until.
– Previously.
– Historically.
– BackTo.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 19

≠

LTL Semantics

• A model for an LTL formula    is an infinite sequence 𝜎 = 𝜎0, 𝜎1, …with a designated 
location 𝑗 ≥ 0.

• Each letter 𝜎𝑖 is a set of propositions true at time 𝑖.
• Formula 𝜑 holds over sequence 𝜎 in location 𝑖 ≥ 0, denoted 𝜎, 𝑖 ⊨ 𝜑, if:
– If 𝜑 is a proposition 𝜎, 𝑖 ⊨ 𝜑 ⟺ 𝜑 ∈ 𝜎𝑖
– 𝜎, 𝑖 ⊨ ¬𝜑 ⟺ 𝜎, 𝑖 ⊨ 𝜑
– 𝜎, 𝑖 ⊨ 𝜑1 ∨ 𝜑2 ⟺ 𝜎, 𝑖 ⊨ 𝜑1or 𝜎, 𝑖 ⊨ 𝜑2

– 𝜎, 𝑖 ⊨ 𝜑 ⟺ 𝜎, 𝑖 + 1 ⊨ 𝜑
– 𝜎, 𝑖 ⊨ 𝜑 ⟺ 𝑖 > 0 and 𝜎, 𝑖 − 1 ⊨ 𝜑
– 𝜎, 𝑖 ⊨ 𝜑1𝑈𝜑2 ⟺ ∃𝑘 ≥ 𝑖. 𝜎, 𝑘 ⊨ 𝜑2 and ∀𝑖 ≤ 𝑗 < 𝑘. 𝜎, 𝑗 ⊨ 𝜑1
– 𝜎, 𝑖 ⊨ 𝜑1𝑆𝜑2 ⟺ ∃𝑘 ≤ 𝑖. 𝜎, 𝑘 ⊨ 𝜑2 and ∀𝑖 ≥ 𝑗 > 𝑘. 𝜎, 𝑗 ⊨ 𝜑1

• Derived:
– 𝜎, 𝑖 ⊨ 𝜑 ⟺ ∃𝑘 ≥ 𝑖 𝜎, 𝑘 ⊨ 𝜑
– 𝜎, 𝑖 ⊨ 𝜑 ⟺ ∀𝑘 ≥ 𝑖. 𝜎, 𝑘 ⊨ 𝜑



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 20

LTL Exercises

?

?

?



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 21

• Systems with discrete states.
• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0〉, where
– Σ – a finite input alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with state and an input letter a set 

of successor states.
– 𝑞0– an initial state. 

• An input word w = 𝜎0, 𝜎1, … is a sequence of letters from Σ. 
• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every 
i ≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• An automaton is deterministic if for every 𝑞 ∈ 𝑄 and 𝜎 ∈ Σ we have 𝛿 𝑞, 𝜎 ≤ 1.

Automata



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 22

• Systems with discrete states.
• Formally, 𝑀 = 〈Σ, Δ, 𝑄, 𝛿, 𝑞0, 𝐿〉, where
– Σ – a finite input alphabet.
– Δ – a finite output alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with every state and an input letter

a set of successor states.
– 𝑞0– an initial state. 
– 𝐿: 𝑄 × Σ → Δ – an output function. Associates with every transition an output letter.

• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every i
≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• The computation correspoinding to r = q0, q1, … over 𝑤 is c

= 𝜎0, 𝐿 𝑞0, 𝜎0 , 𝜎1, 𝐿 𝑞1, 𝜎1 , … .

Mealy Machines



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 23

Mealy Machines and LTL

• The set of computations of a machine 𝑀 = Σ, Δ, 𝑄, 𝛿, 𝑞0, 𝐿 is  denoted ℒ M . 
• Assume Σ = 2ℐand Δ = 2𝒪. So input letters are assignments to input propositions and 

outputs are assignments to output propositions. 
• A machine 𝑀 satisfies a formula 𝜑, denoted 𝑀 ⊨ 𝜑, if every computation in ℒ(M)

satisfies 𝜑.
• Given an LTL formula 𝜑 over propositions 𝒫𝑟𝑜𝑝 = ℐ ∪ 𝒪 we say that 𝜑 is realizable if 

there is a Mealy machine that satisfies it. 
• Our task is going to be to find such a Mealy machine or say that it does not exist.
• We will mostly be interested in deterministic machines.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 24

Bibliography

1. Principles of Model Checking (C. Baier and J.-P. Katoen), MIT Press, 2008.
2. Model Checking (E. Clarke, O. Grumberg, and D. Peled), MIT Press, 1999.
3. Handbook of Model Checking (Eds., E. Clarke, T.A. Henzinger, H. Veith), Springer-

Verlag.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 25

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Current Research Directions

Lecture2.pptx


Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 25

Realizability

• So, given a property 𝜑 and a partition 𝒫𝑟𝑜𝑝 = ℐ ∪ 𝒪 find a system 𝑀such that 𝑀 ⊨ 𝜑.
• For every possible input, decide on an output …
• All paths through the machine should satisfy the property.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 26

Arbiter

Arbiter

r1
r2

rn

g1
g2

gn

Client

ri gi



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 27

Arbiter2

• Propositions 𝒫𝑟𝑜𝑝 = 𝑟1, 𝑟2, 𝑔1, 𝑔2 , where ℐ = 𝑟1, 𝑟2 and 
𝒪 = 𝑔1, 𝑔2 .

• Requirements:
– 𝐴1: leave requests: 𝑟1 ∧ ! 𝑔1 →∘ 𝑟1 ∧ (𝑟2 ∧ ! 𝑔2 →∘ 𝑟2)
– 𝐺1: leave  grants:  𝑟1 ∧ 𝑔1 →∘ 𝑔1 ∧ (𝑟2 ∧ 𝑔2 →∘ 𝑔2)
– 𝐺2: mutual exclusion: ! 𝑔1 ∨ ! 𝑔2
– 𝐺3: deliver and remove grants:        𝑔1 ↔ 𝑟1 ∧ 𝑔2 ↔ 𝑟2

• Or together: A1 → 𝐺1 ∧ 𝐺2 ∧ 𝐺3



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 28

What’s the idea?

• Think about control:
– Some things are under our control.
– Some things are not.

• We want to exercise our control so that to achieve certain goals.
• In some cases the environment is hostile.
• What we want:
– Find a strategy that will guide our actions based on our view of the world.

• This leads to viewing the world as an opponent:
– Exercise control so that uncontrollable events do not lead to damage.

• We model this as two-player games.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 29

Example: Nim

• Some rows of matches. 
• Every player removes in turn at least one match from one row.
• The one to remove last match wins.
• Can you win?



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 30

Whose in Control?

• We use graphs with vertices for states and edges for transitions.
• Ownership is by using two types of vertices.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 31

Environment

System
A Play



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 32

Arbiter

Arbiter

r1
r2

rn

g1
g2

gn

Client

ri gi



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 33



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 34

Games

• Formally, a game is 𝐺 = 𝑉, 𝑉0, 𝑉1, 𝐸, 𝛼 , where
– 𝑉 is a set of nodes.
– 𝑉0 and 𝑉1 form a partition of 𝑉.
– 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

• A play is 𝜋 = 𝑣0, 𝑣1, …
– 𝛼 is a set of winning plays.

• A strategy for player 𝑖 is a function 𝑓𝑖: 𝑉
∗ ⋅ 𝑉𝑖 → 𝑉 such that v, 𝑓𝑖 𝑤 ⋅ 𝑣 ∈ 𝐸.

• A play 𝜋 = 𝑣0, 𝑣1, … is compatible with 𝑓𝑖 if for every 𝑗 ≥ 0 such that 𝑣𝑗 ∈ 𝑉𝑖 we have 

𝑣𝑗+1= 𝑓𝑖(𝑣0⋯𝑣𝑗).

• A strategy for player 0 is winning if every play compatible with it is in 𝛼. A strategy
for player 1 is winning if every play compatible with it is not in 𝛼.

• A node 𝑣 is won by player 𝑖 if she has a winning strategy for all plays starting from 
𝑣.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 35

Control Predecessor

• In control it is easier to walk backwards.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 36

Environment

System
Game Analysis



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 37

Control Predecessor (for P0)

• Start from an set of nodes 𝑊 ⊆ 𝑉.
• We want to say:
– The system can force the environment to 𝑊 in one move.

• That is: 
– Nodes 𝑣 ∈ 𝑉0 for which some successor is in 𝑊.
– Nodes 𝑣 ∈ 𝑉1 for which all successors are in 𝑊.

• Formally:
𝑐𝑝𝑟𝑒 𝑊 = 𝑣 ∈ 𝑉0 ∃𝑣′ ∈ 𝑊. 𝑣, 𝑣′ ∈ 𝐸 ∪

{𝑣 ∈ 𝑉1 ∣ ∀𝑣
′. 𝑣, 𝑣′ ∈ 𝐸 → 𝑣′ ∈ 𝑊}



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 38

Control Predecessor (for P1)

• Start from an set of nodes 𝑊 ⊆ 𝑉.
• We want to say:
– The environment can force the system to 𝑊 in one move.

• That is: 
– Nodes 𝑣 ∈ 𝑉1 for which some successor is in 𝑊.
– Nodes 𝑣 ∈ 𝑉0 for which all successors are in 𝑊.

• Formally:
𝑐𝑝𝑟𝑒1 𝑊 = 𝑣 ∈ 𝑉1 ∃𝑣′ ∈ 𝑊. 𝑣, 𝑣′ ∈ 𝐸 ∪

{𝑣 ∈ 𝑉0 ∣ ∀𝑣
′. 𝑣, 𝑣′ ∈ 𝐸 → 𝑣′ ∈ 𝑊}



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 39

Let’s solve some games!



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 55

ap

!p



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 56

p

r

r

r

r

!p

!p



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 57

r

r

r

r

!p

!p

p



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 58

Safety Games

• Check that P0 can enforce  ♢𝑝.

Lemma. The algorithm computes the set of states winning for P0 with objective  ♢𝑝.
Proof.  Later. 

1. fix (new := p)
2. new := new ∧ 𝑐𝑝𝑟𝑒(new)
3. end // fix



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 59

Reachability Games

• Check that P1 can enforce  ♢¬𝑝.

Lemma. The algorithm computes the set of states winning for P1 with objective  ♢𝑝.
Proof.  Later. 

𝐴𝑡𝑡𝑟𝑖(𝑊) the set of nodes from which player 𝑖 can force reaching 𝑊.

1. fix (new := ¬p)
2. new := new ∨ 𝑐𝑝𝑟𝑒1(new)
3. end // fix



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 60

Safety vs Reachability Games

• Goals  ♢𝑝 for  P0 and ♢ ¬𝑝 for P1 are complementary.

1. fix (new := p)
2. new := new ∧ 𝑐𝑝𝑟𝑒(new)
3. end // fix

1. fix (new := ¬p)
2. new := new ∨ 𝑐𝑝𝑟𝑒1(new)
3. end // fix



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 61

Safety Games

• Check that P0 can enforce  ♢𝑝.

1. fix (new := p)
2. new := new ∧ 𝑐𝑝𝑟𝑒(new)
3. end // fix



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 62

Proof

• Suppose that new is not empty.
Consider 𝑣 ∈ new. Clearly, 𝑣 ∈ 𝑝. But also 𝑣 ∈ 𝑐𝑝𝑟𝑒(new). 
If 𝑣 ∈ 𝑉0, then 𝑣 has a successor 𝑤 such that 𝑤 ∈ new.
If 𝑣 ∈ 𝑉1, then for every successor 𝑤 of 𝑣 we know 𝑤 ∈ new. 

• If there is a strategy s.t. every play compliant with it wins    𝑝.
Let new0, new1, new2, … be the series of approximations of new. We prove by 
induction that for every 𝑣 winning for P0, 𝑣 ∈ newi for every i. 
Clearly, 𝑣 ∈ 𝑝 implies 𝑣 ∈ new0.
Assume every 𝑣 winning for P0 is in newi for some i. Consider 𝑣 ∈ 𝑉0 winning for P0. 
Then, there is 𝑤 such that 𝑣,𝑤 ∈ 𝐸 and 𝑤 winning for P0. Then, 𝑤 in newi and 𝑣 in
newi+1. Consider 𝑣 ∈ 𝑉1 winning for P0. Then, for every 𝑤 such that 
𝑣,𝑤 ∈ 𝐸 we have 𝑤 winning for P0. Then, every 𝑤 such that  𝑣,𝑤 ∈ 𝐸 is in newi. 

So 𝑣 in newi+1.

1. fix (new := p)
2. new := new ∧ 𝑐𝑝𝑟𝑒(new)
3. end // fix



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 63

r

r

r

r

r

r

r
r

r

r

r

r

r

r

r

r

r

r
r

r

r

r

r

r

r



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 64

r

r

r

r

r

r

0

0

0

0

0

0

0

0

0

0

0

0

0



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 65

r

r

r

r

r

1

1

1

1

1

1

1

1

1

1

1

0

0

r



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 66

r

r

r

r

r

2

1

2

2

2

2

2

2

1

2

2

0

0

r



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 67

r

r

r

r

r

3

1

2

3

3

3

3

3

1

2

3

0

0

r



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 68

r

r

r

r

r

4

1

2

3

3

3

3

3

1

2

3

0

0

r



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 69

r

r

r

r

r

5

1

2

3

3

3

3

3

1

2

3

0

0

r



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 70

r

r

r

r

r

4

1

2

3

3

3

3

3

1

2

3

0

0

r



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 71

Büchi Games

• Check that P0 can enforce        𝑝.

Lemma. The algorithm computes the set of nodes winning for P0 with objective        𝑝.

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 72

Büchi Games

• Check that P0 can enforce    𝑝.

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 73

Proof (Control of Büchi –Soundness)

• Suppose that greatest is not empty. For the fixpoint to 
terminate, the inner fixpoint starting from this value 
recomputes it.

• Let least0, least1, least2, … be the sequence of values that least has through the 
computation of this last iteration.

• Consider 𝑣 ∈ greatest. Let 𝑖0 be the index such that 𝑣 ∈ least
𝑖0

. By definition of 
𝑐𝑝𝑟𝑒(⋅), P0 can force a successor 𝑤 of 𝑣. But then, 𝑤 ∈ least

𝑖1
for some 𝑖1 < 𝑖0. 

• This shows that P0 can ensure to reach least0 = 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest). So it ensures 
a visit 𝑝. 
•But now least0 = 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest). So in the next step P0 forces leastj for 

some 𝑗 and repeat this process.
• P0 can enforce 𝑝.

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 74

Proof (Control of Büchi - completeness)

• If there is a strategy 𝑓 s.t. every play compliant with it 
wins  𝑝.

• Every node 𝑣 from which 𝑓 is winning 
remains in every approximation of the fixpoint greatest:
– From 𝑣 there is a maximum on the length of paths to reach 𝑝 (König’s lemma).
– Prove by induction on the number of iterations in the first fixpoint that 

win⊆ greatest.
– For greatest0 = 𝑉 this is clear.  
– Assume win⊆ greatesti. Then for every node 𝑣 ∈ win it must be that 𝑣 ∈ leastj for   

the distance to reach 𝑝 ∧ win.

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 40

Strategy

• A strategy is the way of enforcing the goal.
• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 

the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 𝑉
∗ ⋅ 𝑉0 → 𝑉 such that v, 𝑓𝑖 𝑤 ⋅ 𝑣 ∈ 𝐸.

• We look to replace 𝑉∗ by some (finite) domain 𝐷. Then, instead of considering 𝑉 we 
could consider 𝐷 × 𝑉.

• The strategy is replaced by two functions:

– Move function: 𝑓𝑖
𝑚: 𝐷 × 𝑉𝑖 → 𝑉 s.t. 𝑣, 𝑓 𝑑, 𝑣 ∈ 𝐸.

– Update function: 𝑓𝑖
𝑢: 𝐷 × 𝑉 → 𝐷.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 43

What about Synthesis?

• Our goal is to construct a Mealy machine that realizes the specification.
– A Mealy machine from every state reads input and answers with output.

• A node in the game corresponding to choice of
input will be followed by node corresponding 
to choice of output.

• We can define a specialized game with nodes in 2ℐ∪𝒪. 
• We can define the winning condition with an LTL formula over ℐ ∪ 𝒪. A play

naturally corresponds to a possible model.
• For a set of nodes 𝑊, define 

𝑐𝑝𝑟𝑒 𝑊 = {𝑣 ∣ ∀𝑥 ∈ 2ℐ . ∃𝑦 ∈ 2𝒪 . (𝑥 ∪ 𝑦) ∈ 𝑊}
• When computing the set of winning states, check that for every 𝑥 ∈ 2ℐ there is 𝑦 ∈ 2𝒪

such that 𝑥 ∪ 𝑦 is winning.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 44

Further Specialize Strategy

• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 
the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 𝑉
∗ ⋅ 𝑉0 → 𝑉 such that v, 𝑓𝑖 𝑤 ⋅ 𝑣 ∈ 𝐸.

• We look to replace 𝑉∗ by some (finite) domain 𝐷. Then, instead of considering 𝑉 we 
could consider 𝐷 × 𝑉.

• The strategy is replaced by two functions:

– Move function: 𝑓𝑖
𝑚: 𝐷 × 𝑉𝑖 → 𝑉 s.t. 𝑣, 𝑓 𝑑, 𝑣 ∈ 𝐸.

– Update function: 𝑓𝑖
𝑢: 𝐷 × 𝑉 → 𝐷.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 45

Further Specialize Strategy

• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 
the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 2ℐ∪𝒪
∗
⋅ 2ℐ → 2𝒪.

• We look to replace 𝑉∗ by some (finite) domain 𝐷. Then, instead of considering 𝑉 we 
could consider 𝐷 × 𝑉.

• The strategy is replaced by two functions:

– Move function: 𝑓𝑖
𝑚: 𝐷 × 𝑉𝑖 → 𝑉 s.t. 𝑣, 𝑓 𝑑, 𝑣 ∈ 𝐸.

– Update function: 𝑓𝑖
𝑢: 𝐷 × 𝑉 → 𝐷.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 46

Further Specialize Strategy

• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 
the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 2ℐ∪𝒪
∗
⋅ 2ℐ → 2𝒪.

• We look to replace 2ℐ∪𝒪
∗

by some (finite) domain 𝐷. Then, instead of 

considering 2ℐ∪𝒪
∗
we could consider 𝐷 × 2ℐ∪𝒪.

• The strategy is replaced by two functions:

– Move function: 𝑓𝑖
𝑚: 𝐷 × 𝑉𝑖 → 𝑉 s.t. 𝑣, 𝑓 𝑑, 𝑣 ∈ 𝐸.

– Update function: 𝑓𝑖
𝑢: 𝐷 × 𝑉 → 𝐷.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 47

Further Specialize Strategy

• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 
the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 2ℐ∪𝒪
∗
⋅ 2ℐ → 2𝒪.

• We look to replace 2ℐ∪𝒪
∗

by some (finite) domain 𝐷. Then, instead of 

considering 2ℐ∪𝒪
∗
we could consider 𝐷 × 2ℐ∪𝒪.

• The strategy becomes 𝑓𝑖: 𝐷 × 2ℐ → 𝐷 × 2𝒪.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 48

From Strategy to System

Consider a strategy 𝑓0: 𝐷 × 2ℐ → 𝐷 × 2𝒪 and let 𝑑0 ∈ 𝐷 be the initial memory value. 
Construct the machine 𝑀 = Σ, Δ, 𝐷, 𝛿, 𝑑0, 𝐿 with: 
Σ = 2ℐ

Δ = 2𝒪

𝛿 𝑑, 𝑖 = 𝑓0 𝑑, 𝑖 ⇓1
L 𝑑, 𝑖 = 𝑓0 𝑑, 𝑖 ⇓2
What’s the memory domain in the cases we’ve seen?



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 49

Winning → Realizability

Consider a run r = q0, 𝑞1, … over w = 𝜎0, 𝜎1, … and the 

corresponding computation c = 𝜎0, 𝐿 𝑞0, 𝜎0 , 𝜎1, 𝐿 𝑞1, 𝜎1 , … of 
𝑀.
i. For every 𝑖 ∈ 2ℐ there is o ∈ 2𝒪 s.t. (𝑖, 𝑜) is winning.
ii. By 𝑓 winning c satisfies the formula.

Realizability → Winning

Take a machine 𝑀 and use it to construct the winning strategy.
A play in the game is a computation of the machine.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 50

Memorize Intermediate Values

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least)
4. end // fix least
5. greatest := least
6. end // fix greatest

1. fix (greatest := 𝑉)
2. 𝑐𝑌 ≔ 0;
3. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
4. y[𝑐𝑌]:= least;
5. least := least ∨ 𝑐𝑝𝑟𝑒(least)
6. 𝑐𝑌 ≔ 𝑐𝑌 + 1;
7. end // fix least
8. greatest := least
9. end // fix greatest



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 51

Construct the Realizing Machine

• Given 𝐺 = 2ℐ∪𝒪 ∪ 2ℐ∪𝒪 × 2ℐ , 2ℐ∪𝒪 × 2ℐ , 2ℐ∪𝒪 , 𝐸, 𝑝 .

𝐸 = 𝑖, 𝑜 , 𝑖, 𝑜, 𝑖′ , 𝑖, 𝑜, 𝑖′ , 𝑖′, 𝑜′

• Construct a 𝑀 = 2ℐ , 2𝒪 , 2ℐ∪𝒪 , 𝛿, 𝑠0, 𝐿 :

𝛿 𝑖, 𝑜 , 𝑖′ = ൝
{(𝑖′, 𝑜′) ∣ 𝑖′, 𝑜′ is winning} 𝑖, 𝑜 ∈ 𝑝

{ 𝑖′, 𝑜′ ∣ 𝑖′, 𝑜′ ∈ y[ ≤ 𝑗]} 𝑖, 𝑜 ∈ y[𝑗 + 1]



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 52

Summary

• Starting from an LTL formula 𝜑, construct the game  

𝐺 = 2ℐ∪𝒪 ∪ 2ℐ∪𝒪 × 2ℐ , 2ℐ∪𝒪 × 2ℐ , 2ℐ∪𝒪 , 𝐸, 𝜑 .
• Compute the set win.
• If for every 𝑖 ∈ 2ℐ there is 𝑜 ∈ 2𝒪such that 𝑖, 𝑜 ∈win then declare 𝜑 realizable.
• Extract from the winning strategy a realizing Machine.

• But we only know to solve reachability/safety and Büchi games.
• What about general LTL?



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 53

Bibliography

1. Infinite Games (R. Mazala), in Automata, Logic, and Infinite-Games (Eds., E. 
Grädel, W. Thomas, and T. Wilke), Springer-Verlag, 2002.

2. Supervisory control of a class of discrete event processes (P. J. Ramadge and W. M. 
Wonham), SIAM J. Control and Optimization, Vol. 25, No. 1, pp. 206-230, 1987.

3. On the Synthesis of Discrete Controllers for Timed Systems (O. Maler, A. Pnueli, 
and J. Sifakis), STACS 1995: 229-242.

4. An 𝑂 𝑛2 time algorithm for alternating Büchi games (K. Chatterjee and M. 
Henzinger), SODA 2012: 1386-1399.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 54

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Current Research Directions

Lecture3.pptx


Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 72

From Logic to Graphs?

How to embed the logical winning condition 
into the graph notation?



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 73

• Systems with discrete states.
• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0, 𝛼〉, where
– Σ – a finite input alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with state and an input letter a set 

of successor states.
– 𝑞0– an initial state. 
– 𝛼 ⊆ 𝑄– a set of accepting states. 

• An input word w = 𝜎0, 𝜎1, … is a sequence of letters from Σ. 
• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every 
i ≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• A run is accepting if for infinitely many i ∈ ℕ we have qi ∈ 𝛼.
• A word is accepted if  some run over it is accepting.
• The language of 𝐴, denoted ℒ 𝐴 , is the set of words accepted by 𝐴.

Automata as Acceptors



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 74

From LTL to Büchi Automata

Theorem. Given an LTL formula 𝜑 we can construct a nondeterministic Büchi

automaton 𝑁𝜑 such that ℒ 𝑁𝜑 = ℒ 𝜑 . 

The size of 𝑁𝜑 is exponential in the length of 𝜑.

Intuitively, if sub(𝜑) is the set of subformulas of 𝜑, a state of 𝑁𝜑 corresponds to a set of 

subformulas that are true (in an accepting run). 



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 75

Control with Automaton Observer

p !p p

Visit finitely many not-p’s           p

Environment

System



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 76

NBW for         p 

• NBW for 𝜑 = 𝑝:

𝑝,¬𝑝

𝑝

𝑝



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 77

Nondeterminism is bad

p !p p
Environment

System

𝑝,¬𝑝

𝑝

𝑝



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 78

What went wrong?

• The automaton is nondeterministic.
• It makes predictions regarding the future and aborts runs that do not match these 

predictions.
• In the context of games nondeterminism is added as choice of one side:
– If the system resolves nondeterminism, it has to find a solution that matches all 

possible futures.
– If the environment resolves nondeterminism, the system must force all runs to be 

accepting.



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 79

Solution: Determinism

• If the automaton were deterministic, there would be no added choice!
• We create a synchronous parallel composition of the automaton with the game.
• Solve the resulting game.
• Extract system from winning strategy.



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 80

• Systems with discrete states.
• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0, 𝛼〉, where
– Σ – a finite input alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with state and an input letter a set 

of successor states.
– 𝑞0– an initial state. 
– 𝛼:𝑄 → ℕ– a ranking of states. 

• An input word w = 𝜎0, 𝜎1, … is a sequence of letters from Σ. 
• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every 
i ≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• A run is accepting if for the minimum rank to occur infinitely often is even.
• The language of 𝐴, denoted ℒ M , is the set of words accepted by 𝐴.

Automata as Acceptors



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 81

Synchronous Composition of Games

• Consider a game 𝐺 = 𝑉, 𝑉0, 𝑉1, 𝐸, 𝜑 and a deterministic (with respect to entire 
alphabet Σ) automaton 𝐴𝜑 = Σ,𝐷, 𝛿, 𝑑0, 𝛽 .

• Their synchronous parallel composition (G ∥ 𝐴𝜑) is the game, 
෠𝐺 = 〈 ෠𝑉, ෠𝑉0, ෠𝑉1, ෠𝐸, 𝛾〉 where:
– ෠𝑉 = 𝐷 × 𝑉 – a new node holds a game node and an automaton state..
– ෠𝐸 = 𝑑, 𝑣 , 𝑑′, 𝑣′ ∣ 𝑣, 𝑣′ ∈ 𝐸 and 𝑑′ = 𝛿(𝑑, 𝐿 𝑣 ) – the transitions of the 

automaton are updated.
– 𝛾 𝑑, 𝑣 = 𝛽(𝑑) – acceptance only considers the acceptance of the automaton.

• The results is a parity game.



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 82

Deterministic Automata Work!

Theorem. P0 wins 𝐺 with winning condition 𝜑 iff P0 wins G ∥ 𝐴𝜑, where 𝐴𝜑 is a 

deterministic automaton for 𝜑.

If P0 wins 𝐺 all she has to do in G ∥ 𝐴𝜑 is to use the same strategy. Every play in G ∥

𝐴𝜑 corresponds to a play in G and the unique run of 𝐴𝜑that reads this play. But the 

play satisfies 𝜑, so the run must be accepting. So the play in G ∥ 𝐴𝜑 is winning for P0 

as well.
If P0 wins G ∥ 𝐴𝜑 she can use the states of 𝐴𝜑 as (part of) the memory in G. She will 

then be able to use the winning strategy from G ∥ 𝐴𝜑. Now, a play in G corresponds 

to an accepting run of 𝐴𝜑. But then the play satisfies 𝜑, which means that P0 wins.

⇒

⇒



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 83

Two tiny issues …

• How do we get a deterministic parity automata for LTL?
• How do we solve a parity games?



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 84

Deterministic Automata

• Well, the answer is simple: construct a nondeterministic automaton and determinize 
it!

• Starting from an automaton with 𝑛 states:
– Create an automaton with O((𝑛!)2) states and 2𝑛 rank.

• Subset construction augmented with a tree structure. Will not be shown.



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 85

Solving parity Games

Func odd_parity(i, win)
1. fix (least := ∅)
2. least:= win ∨ 𝑣 𝛼 𝑣 ≥ 𝑖} ∧ 𝑐𝑝𝑟𝑒(least)
3. if (i!=max) 
4. least := even_parity(i+1, least)
5. end // fix least
6. Return least;
End // Func odd_parity

Func even_parity(i, win)
1. fix (greatest := 𝑉)
2. greateast := win ∨ 𝑣 𝛼 𝑣 = 𝑖} ∧ 𝑐𝑝𝑟𝑒(greatest)
3. if (i!=max) 
4. greatest := odd_parity(i+1, greatest)
5. end // fix greatest
6. Return greatest;
End // Func even_parity

Func main()
1. Return even_parity(0, ∅);
End // Func main



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 86

Proof (Soundness)

• Suppose that win is not empty. Have the intermediate least fixpoint approximations: 

least0
𝑝

, least1
𝑝

, least2
𝑝

, … for an odd parity 𝑝.

• Consider 𝑣 ∈ win. Let 𝑖1, 𝑖3, … , 𝑖𝑚 be the indices such that 𝑣 ∈ least𝑖𝑗
𝑗

. By definition of 

𝑐𝑝𝑟𝑒(⋅), P0 can force a successor 𝑤 of 𝑣. But then, either (a) for some even 𝑗 we have 
𝑣 ∈ 𝛼 𝑗 and 𝑤 has 𝑖1

′ , 𝑖3
′ , … , 𝑖𝑚

′ such that for 𝑗′ < 𝑗 we have 𝑖𝑗′
′ ≤ 𝑖𝑗′

′ or (b) there is some 

𝑗 such that 𝑤 has 𝑖1
′ , 𝑖3

′ , … , 𝑖𝑚
′ , for 𝑗′ < 𝑗 we have 𝑖𝑗′

′ = 𝑖𝑗′
′ , and for 𝑗 we have 𝑖𝑗

′ < 𝑖𝑗
′.

• Consider an infinite path and what happens to these numbers. There must be an even 
priority that is “reset” infinitely often, showing that P0 wins.



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 89

To Summarize

• Start with a game structure 𝐺 with winning condition 𝜑.
• Construct a deterministic automaton 𝐴𝜑 for 𝜑.

• Construct the product 𝐺 ∥ 𝐴𝜑.

• Solve the game 𝐺 ∥ 𝐴𝜑.

• Construct a winning strategy for 𝐺 ∥ 𝐴𝜑.

• Construct from the winning strategy a Mealy machine
realizing 𝜑.

𝜑 = 𝑛

𝐴𝜑 = 22
𝑂(𝑛 log 𝑛)

𝛼 = 2𝑛

22
𝑂(𝑛2 log 𝑛)

The problem is 2EXPTIME-complete.
• Determinization is an issue.
• Practical solutions of parity games.



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 90

Bibliography

1. Reasoning About Infinite Computations (M.Y. Vardi and P. Wolper), Information and 
Computation, Vol. 115, No. 1, pp. 1-37, 1994.

2. Simple On-The-Fly Automatic Verification of Linear Temporal Logic (R. Gerth, D. 
Peled, M.Y. Vardi, and P. Wolper), Protocol Specification, Testing, and Verification 1995: 
3-18.

3. On the Synthesis of a Reactive Module (A. Pnueli and R. Rosner), POPL 1989: 179-
190.

4. Determinization of Büchi-Automata (M. Roggenbach), in Automata, Logic, and 
Infinite-Games (Eds., E. Grädel, W. Thomas, and T. Wilke), Springer-Verlag, 2002.

5. On the Complexity of 𝜔-Automata (S. Safra), FOCS 1998, 319-327.
6. From Nondeterminstic Büchi and Streett Automata to Deterministic Parity 

Automata (N. Piterman), Logical Methods in Computer Science, Vol. 3, No. 3, pp. e5, 
2007.

7. Algorithms for Parity Games (H. Klauck), in Automata, Logic, and Infinite-Games 
(Eds., E. Grädel, W. Thomas, and T. Wilke), Springer-Verlag, 2002.



Lecture 3: General LTL Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 91

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Current Research Directions

Lecture4.pptx


Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 92

Two Ways to Avoid Determinization

• Replace by counting:
– Search for bounded strategy.
– Express winning through safety games.
– Limited determinization through counting.
– Translate to an SMT problem.

• Concentrate on simpler specifications:
– Both system and environment are Büchi automata.
– Enforce “deterministic” specification.
– State-space exponential. Exponent linear.



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 96

The Automata Theoretic Approach to LTL Model Checking

• Given a Mealy machine 𝑀 = Σ, Δ, 𝑄, 𝛿, 𝑞0, 𝐿 , 𝑀 satisfies a formula 𝜑, denoted 𝑀 ⊨ 𝜑, 
if every computation in ℒ(M) satisfies 𝜑.

• Dually, 𝑀 satisfies a formula 𝜑 if no computation in ℒ(M) satisfies ¬𝜑.
• Use automata for model checking:

– Construct a nondet Büchi automaton 𝑁¬𝜑 such that ℒ 𝑁𝜑 = Σ × Δ 𝜔 ∖ ℒ 𝜑 .

– Take the product of 𝑀 and 𝑁¬𝜑 as a nondet Büchi automaton.

– If 𝑀 ×𝑁¬𝜑 accepts some word, the word corresponds to a computation in ℒ(M) not 

satisfying 𝜑.
• Our goal: 
– Find a Mealy machine 𝑀 and show that 𝑀 ×𝑁¬𝜑 is empty.



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 97

• Systems with discrete states.
• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0, 𝛼〉, where
– Σ – a finite input alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with state and an input letter a set 

of successor states.
– 𝑞0– an initial state. 
– 𝛼 ⊆ 𝑄– a set of accepting states. 

• An input word w = 𝜎0, 𝜎1, … is a sequence of letters from Σ. 
• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every 
i ≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• A run is accepting if for infinitely many i ∈ ℕ we have qi ∈ 𝛼.
• A word is accepted if  some run over it is accepting.
• The language of 𝐴, denoted ℒ 𝐴 , is the set of words accepted by 𝐴.

Nondeterministic Büchi Automata 



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 98

LTL Model Checking

Theorem. Given an LTL formula 𝜑 over propositions ℐ ∪ 𝒪 we can construct a nondet

Büchi automaton 𝑁¬𝜑 over alphabet 2ℐ∪𝒪such that ℒ 𝑁¬𝜑 = (2ℐ∪𝒪)𝜔 ∖ ℒ 𝜑 . 

• We have:
– Mealy machine 𝑀 = 2ℐ , 2ℐ , 𝑄, 𝛿, 𝑞0, 𝐿

– Büchi automaton 𝑁¬𝜑 = 2ℐ∪𝒪 , 𝑆, 𝜌, 𝑠0, 𝛼

• Construct:

– 𝑀 ×𝑁¬𝜑 = 2ℐ∪𝒪 , 𝑄 × 𝑆, 𝛿′, 𝑞0, 𝑠0 , 𝑄 × 𝛼 , where

𝛿′ q, s , 𝑖, 𝑜 = {(𝑞′, 𝑠′)|𝛿 𝑠, 𝑖 = 𝑠′, 𝐿 𝑠, 𝑖 = 𝑜, and 𝑞′ ∈ 𝜌(𝑞, 𝑖, 𝑜 )}

• An accepting run r = (q0, 𝑠0) , (q1, 𝑠1), … on word w = 𝜎0, 𝜎1, … is exactly a 
computation of 𝑀 accepted by 𝑁¬𝜑.

• But we are interested in the case that 𝑀 ⊨ 𝜑 …



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 99

Analyze the Graph

• Assume that 𝑀 ×𝑁¬𝜑 = 2ℐ∪𝒪 , 𝑄 × 𝑆, 𝛿′, 𝑞0, 𝑠0 , 𝑄 × 𝛼 is empty (𝑀 ⊨ 𝜑).

• Every run of 𝑀 ×𝑁¬𝜑 contains finitely many accepting states in 𝑄 × 𝛼.

• But how many? 
– Think about 𝑀 ×𝑁¬𝜑 as a graph.

– If there are more than 𝛼 ⋅ |𝑆| accepting states on a path then this is an accepting 
loop. 

– Create a proof that 𝑀 ×𝑁¬𝜑 is empty by adding a function 𝑓: 𝑄 × 𝑆 → ℕ such that:

• 𝑓 𝑞0, 𝑠0 = 𝛼 ⋅ 𝑆

• If for some 𝑖, 𝑜 we have 𝑞′, 𝑠′ ∈ 𝛿′ q, s , 𝑖, 𝑜 then:
– If s ∈ 𝛼 then 𝑓 𝑞, 𝑠 > 𝑓 𝑞′, 𝑠′ .
– If s ∉ 𝛼 then 𝑓 𝑞, 𝑠 ≥ 𝑓 𝑞′, 𝑠′ .



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 100

Bounded Synthesis
• Remember, given 𝜑 (and 𝑁¬𝜑 = 2ℐ∪𝒪 , 𝑆, 𝜌, 𝑠0, 𝛼 ) we want a machine 𝑀 s.t. 𝑀 ⊨ 𝜑.
• What if we search for a machine with at most 𝑚 states?
• We can just “nondeterministically guess” its structure along with the proof that it 

satisfies 𝜑.
• Create an SMT instance Γ:
– Variables encoding transitions:

For j ∈ {1, … ,𝑚} and 𝜎 ∈ 2ℐ have 𝑡𝑟j,𝜎 ∈ {1,… ,𝑚}.
– Variables encoding outputs:

For j ∈ {1, … ,𝑚} and 𝜎 ∈ 2ℐ have 𝑙𝑗,𝜎 ∈ 2𝒪.
– Variables encoding Büchi proof:

For j ∈ {1, … ,𝑚} and 𝑠 ∈ 𝑆 have 𝑓𝑗,𝑠 ∈ {0,… ,𝑚 ⋅ 𝑆 , ⊤} (⊤ > ⊤ and for all k,⊤ > k). 
– Add constraints:
𝑓0,𝑠0 ≠ ⊤
If 𝑠′ ∈ 𝜌(𝑠, 𝜎, 𝑙𝑗,𝜎) and 𝑠 ∈ 𝛼 then 𝑓𝑗,𝑠 > 𝑓𝑡𝑟𝑗,𝜎,𝑠′.

If 𝑠′ ∈ 𝜌(𝑠, 𝜎, 𝑙𝑗,𝜎) and 𝑠 ∉ 𝛼 then 𝑓𝑗,𝑠 ≥ 𝑓𝑡𝑟𝑗,𝜎,𝑠′.
• If Γ is satisfiable there exists a machine of size at most 𝑚 realizing 𝜑 and it can be 

extracted from the satisfying assignment.



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 101

Advantages

• Simple structure of states. 
– Replace the tree structure over sets of states by a function from states to ranks.
– Determinization is a challenge for implementation.

• Safety games compared with parity games. 
– Solution of safety games is much simpler.
– Exact complexity and practical solving of parity games are interesting open 

problems.
• Search for small machines first. 
– By increasing the bound gradually we can ensure to find small implementations 

first (and compute less).
– Information from failed search for small sizes can be reused for searching for larger 

sizes.
– Worst case complexity is as the general technique.

• Add additional quality constraints.
– Low number of loops … 



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 102

Take Another Look at Machines

• A machine 𝑀 = 〈Σ, Δ, 𝑄, 𝛿, 𝑞0, 𝐿〉, where
– Σ = 2ℐ– a finite input alphabet.
– Δ = 2𝒪– a finite output alphabet.
– 𝑄 = 2𝒳– a finite set of states. 

• Express as an LTL formula over ℐ ∪ 𝒪 ∪ 𝒳:
– 𝑞0:

𝜃 = ∨𝑥∈2ℐ 𝑥, 𝐿 𝑞0, 𝑥 ∧ 𝛿(𝑞0, 𝑥)

– 𝛿: 𝑄 × Σ → 2𝑄:

𝜌 = ∧𝑞∈𝑄,𝑥∈2ℐ 𝑞 ∧ 𝑥 → 𝐿(𝑞, 𝑥) ∨𝑞∈𝛿 𝑞,𝜎 𝑞

• We may want to add some “good things” happen often enough:

∧𝑖 ∨𝑞∈𝐺𝑖 𝑞

• Overall:

𝜃 ∧ 𝜌 ∧ ⋀𝑖 ∨𝑞∈𝐺𝑖 𝑞



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 103

Arbiter

Arbiter

r1
r2

rn

g1
g2

gn

Client

ri gi



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 104

Translate to LTL
• Variables:
ℐ = 𝑟1, 𝑟2
𝒪 = {𝑔1, 𝑔2}

• Initially:
¬𝑟1 ∧ ¬𝑟2 ∧ ¬𝑔1 ∧ ¬𝑔2

• Transition: 

(𝑟1∧ ¬𝑔1) → 𝑟1
¬𝑟1 ∧ 𝑔1 → ¬𝑟1
(𝑟2∧ ¬𝑔2) → 𝑟2
¬𝑟2 ∧ 𝑔2 → ¬𝑟2
¬𝑔1 ∨ ¬𝑔2
(𝑔1 ↔ 𝑟1) → 𝑔1 ↔ 𝑔1
(𝑔2↔ 𝑟2) → 𝑔2 ↔ 𝑔2

• Good things:
𝑔1 = 𝑟1 ∧ (𝑔2 = 𝑟2)

If requesting, stay until granted
Don’t reuse grants

Mutual exclusion
Don’t grant w.o. request
Don’t take away used grants



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 105

Separate to Assumptions and Guarantees

Environment:
• Initially:
¬𝑟1 ∧ ¬𝑟2

• Transition: 

(𝑟1∧ ¬𝑔1) → 𝑟1 ∧

¬𝑟1 ∧ 𝑔1 → ¬𝑟1 ∧

(𝑟2∧ ¬𝑔2) → 𝑟2 ∧

¬𝑟2 ∧ 𝑔2 → ¬𝑟2

System:
• Initially:
¬𝑔1 ∧ ¬𝑔2

• Transition: 
¬𝑔1 ∨ ¬𝑔2 ∧

(𝑔1 ↔ 𝑟1) → 𝑔1 ↔ 𝑔1 ∧

(𝑔2↔ 𝑟2) → 𝑔2 ↔ 𝑔2
• Good things:

𝑔1 = 𝑟1 ∧ (𝑔2 = 𝑟2)



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 106

The Goal for Synthesis

𝜃𝑒 ∧ 𝜌𝑒 → 𝜃𝑠 ∧ 𝜌𝑠 ∧ (∧𝑖 𝐺𝑖)
• This still does not look very simple …
• Can we do anything with the bits 𝜃𝑒, 𝜃𝑠, 𝜌𝑒, and 𝜌𝑠?
– 𝜃𝑠 can be used to restrict the initial moves of P0:

For every initial input there is initial output satisfying 𝜃𝑠 …
– 𝜌𝑠 can be used to restrict the transitions of P0.
– What if we use 𝜃𝑒 and 𝜌𝑒 to restrict the moves of P1?



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 107



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 108



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 109

What’s left?

𝜃𝑒 ∧ 𝜌𝑒 → 𝜃𝑠 ∧ 𝜌𝑠 ∧ (∧𝑖 𝐺𝑖)
• This is slightly more complicated than response. We call it generalized Büchi.

Generalized Büchi:
1. fix (greatest := 𝑉)
2. foreach (𝐺𝑖)
3. fix (least := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest)
4. least := least ∨ 𝑐𝑝𝑟𝑒(least);
5. end // fix least
6. greatest := least;
7. end // foreach
8. end // fix greatest

Büchi:
1. fix (greatest := 𝑉)
2. fix (least := 𝐺 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 110

Proof (Generalized Büchi–Soundness)

• Suppose that greatest is not empty. For the fixpoint to 
terminate, for each 𝐺𝑖 the inner fixpoint starting from 
this value recomputes it.

• Let least0
𝑖 , least1

𝑖 , least2
𝑖 , … be the sequence of values 

that least has through the computation of this last 
iteration for 𝐺𝑖.

• Consider 𝑣 ∈ greatest. Let 𝑗0 be the index such that 

𝑣 ∈ least𝑗0
𝑖 . 

By definition of 𝑐𝑝𝑟𝑒(⋅), P0 can force a successor 𝑤 of 𝑣. But then, 𝑤 ∈ least𝑗1
𝑖 for 

some 𝑗1 < 𝑗0. This shows that P0 can ensure to reach least0
𝑖 = 𝐺0 ∧ 𝑐𝑝𝑟𝑒(greatest). 

So it ensures a visit 𝐺𝑖. 

• But now least0
𝑖 = 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest). 

So next P0 forces least𝑘
𝑖+1, for some 𝑘 and repeat this process.

• By induction, P0 can enforce ∧𝑖 𝐺𝑖.

Generalized Büchi:
1. fix (greatest := 𝑉)
2. foreach (𝐺𝑖)
3. fix (least := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest)
4. least := least ∨ 𝑐𝑝𝑟𝑒(least);
5. end // fix least
6. greatest := least;
7. end // foreach
8. end // fix greatest



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 111

Proof (Control of Büchi - completeness)

If there is a strategy 𝑓 s.t. every play 
compliant with it wins ∧𝑖 𝐺𝑖.
Every node 𝑣 from which 𝑓 is winning 
remains in every approximation of the fixpoint greatest:
Consider some 𝐺𝑖. From 𝑣 there is a maximum on the length of 
paths to reach 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest) (König’s lemma). 
Prove by induction on the number of iterations in the first 
fixpoint that win⊆ greatest.
For greatest0 = 𝑉 this is clear.  Assume win⊆ greatesti. Then for 
every node 𝑣 ∈ win it must be that 𝑣 ∈ leastj for   the distance to 
reach 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(win).

Generalized Büchi:
1. fix (greatest := 𝑉)
2. foreach (𝐺𝑖)
3. fix (least := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest)
4. least := least ∨ 𝑐𝑝𝑟𝑒(least);
5. end // fix least
6. greatest := least;
7. end // foreach
8. end // fix greatest



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 112



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 113

Oops …

• The clients do not release the bus!
• It’s not only the system that has to do good things.
• The environment has to do good things as well!

• We need: ∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖
• We call this Generalized Reactivity (1) or GR(1).



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 114

Solving GR(1) Games

Generalized Reactivity (1):
1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
4. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
5. foreach (𝐴𝑗)

6. fix (greatestX := 𝑉)
7. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

8. end // fix greatestX
9. leastY := leastY ∨ greatestX;
10. end // foreach 𝐴
11. end // fix leastY
12. greatestZ :=leastY;
13. end // foreach 𝐺
14. end // fix greatestZ



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 115

Proof (Control of GR(1) –Soundness)
Suppose that greatestZ is not empty.  For each 𝐺𝑖 the inner 
fixpoint starting from greatestZ recomputes greatestZ.    

Let leastY0
𝑖 , leastY1

𝑖, leastY2
𝑖 , … be the sequence of values that leastY

has during the last iteration.  Each leastY𝑘
𝑖 is equal to the union of 

greatestX𝑘
𝑖,1, greatestX𝑘

𝑖,2, …, greatestX𝑘
𝑖,𝑚.

Consider 𝑣 ∈ greatestZ. Let 𝑘0 be the minimal index such that

𝑣 ∈ leastY𝑘0
𝑖 and let 𝑗0 be the minimal such that 𝑣 ∈ greatestX𝑘0

𝑖,𝑗0. 

By definition of 𝑐𝑝𝑟𝑒, P0 can control to reach in one move 

greatestX𝑘1
𝑖,𝑗1 such that either (A) 𝑘1 < 𝑘0 or (B) 𝑘1 = 𝑘0 and 𝑗1 = 𝑗0. 

In case (B), we know that 𝑣 ⊨ ¬𝐴𝑗0 . So by playing this strategy, P0

can ensure that either some 𝐴 is visited finitely often, or reach 

leastY0
𝑖 ∧ c𝑝𝑟𝑒(greatestZ).

By repeating the same for all 𝐺𝑖 P0 can enforce

∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖

1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
4. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
5. foreach (𝐴𝑗)

6. fix (greatestX := 𝑉)
7. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

8. end // fix greatestX
9. leastY := leastY ∨ greatestX;
10. end // foreach 𝐴
11. end // fix leastY
12. greatestZ :=leastY;
13. end // foreach 𝐺
14. end // fix greatestZ



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 116

Proof (Control of GR(1) – completeness sketch)
If there is a strategy 𝑓 s.t. every play compliant with it wins

∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖
Every 𝑣 from which 𝑓 is winning remains in every 
approximation of the fixpoint greatestZ:
As before, consider some 𝐺𝑖. From 𝑣 there is a maximum on the 
number of visits to 𝐴𝑗 before arriving to 𝐺𝑖 ∧ c𝑝𝑟𝑒(win) (König’s 

lemma). 
Prove by induction on the number of iterations in the first 
fixpoint that win ⊆ greatestZ.
For greatestZ0 = 𝑉 this is clear.  Assume win ⊆ greatestZ𝑙. Then 

for every 𝑣 ∈ win it must be that 𝑣 ∈ leastY𝑘
𝑖 for some 𝑘. 

1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
4. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
5. foreach (𝐴𝑗)

6. fix (greatestX := 𝑉)
7. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

8. end // fix greatestX
9. leastY := leastY ∨ greatestX;
10. end // foreach 𝐴
11. end // fix leastY
12. greatestZ :=leastY;
13. end // foreach 𝐺
14. end // fix greatestZ



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 119

Memorizing Intermediate Values

Generalized Reactivity (1):
1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. 𝑐𝑌:= 0;
4. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
5. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
6. foreach (𝐴𝑗)

7. fix (greatestX := 𝑉)
8. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

9. end // fix greatestX
10. 𝑥[𝐺𝑖][𝑐𝑌][𝐴𝑗] := greatestX;

11. leastY := leastY ∨ greatestX;
12. end // foreach 𝐴
13. 𝑦[𝐺𝑖][𝑐𝑌] := leastY;
14. 𝑐𝑌:= 𝑐𝑌 + 1;
15. end // fix leastY
16. greatestZ :=leastY;
17. end // foreach 𝐺
18. end // fix greatestZ



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 120

Construct the Realizing Machine

𝜃𝑒 ∧ 𝜌𝑒 ∧ (∧𝑗 𝐴𝑗) → 𝜃𝑠 ∧ 𝜌𝑠 ∧ (∧𝑖 𝐺𝑖)

• Embed 𝜃𝑒, 𝜌𝑒, 𝜃𝑠, and 𝜌𝑠 into 𝐺 = 𝑉, 𝑉0, 𝑉1, 𝐸, 𝜑 , where 

𝜑 = ∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖
• Set let m = 𝐺𝑖 and n = 𝐴𝑖 .
• Construct a machine 𝑀 realizing 𝜑:
𝑀 = 2ℐ , 2𝒪 , 2ℐ∪𝒪 × 1. .𝑚 ∪ 𝑠0 , 𝜌, 𝑠0, 𝐿 :

𝜌 𝑠0, 𝑖 = ൜
𝜃𝑠 𝑖 ⊨ 𝜃𝑒
𝑇 𝑖 ⊨ ¬𝜃𝑒

𝜌 𝑖, 𝑜, 𝑙 , 𝑖′ =

(𝑖′, 𝑜′, 𝑙 ⊕ 1) 𝑖, 𝑜 ⊨ 𝐺𝑙 ∧ 𝑖′, 𝑜′ ∈ win

(𝑖′, 𝑜′, 𝑙) 𝑖, 𝑜 ∈ 𝑦[𝐺𝑙][𝑐𝑌] ∧ 𝑖′, 𝑜′ ∈ 𝑦[𝐺𝑙][ < 𝑐𝑌]

(𝑖′, 𝑜′, 𝑙)
𝑖, 𝑜 ⊨ ¬𝐴𝑗 ∧ 𝑖, 𝑜 ∈ x[𝐺𝑙][𝑐𝑌][𝐴𝑗] ∧

𝑖′, 𝑜′ ∈ 𝑦[𝐺𝑙][ ≤ 𝑐𝑌][ ≤ 𝐴𝑗 ]



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 121

Optimizing Symbolic Runtime

Generalized Reactivity (1):
1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. 𝑐𝑌:= 0;
4. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
5. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
6. foreach (𝐴𝑗)

7. fix (greatestX :=𝑦[𝐺𝑖][𝑚𝑎𝑥𝑝𝑟𝑒𝑣])
8. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

9. end // fix greatestX
10. 𝑥[𝐺𝑖][𝑐𝑌][𝐴𝑗] := greatestX;

11. leastY := leastY ∨ greatestX;
12. end // foreach 𝐴
13. 𝑦[𝐺𝑖][𝑐𝑌] := leastY;
14. 𝑐𝑌:= 𝑐𝑌 + 1;
15. end // fix leastY
16. greatestZ :=leastY;
17. end // foreach 𝐺
18. end // fix greatestZ



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 122

Back to the Arbiter

Environment:
• Initially:
¬𝑟1 ∧ ¬𝑟2

• Transition: 

(𝑟1∧ ¬𝑔1) → 𝑟1 ∧

¬𝑟1 ∧ 𝑔1 → ¬𝑟1 ∧

(𝑟2∧ ¬𝑔2) → 𝑟2 ∧

¬𝑟2 ∧ 𝑔2 → ¬𝑟2
• Good things:

¬𝑟1 ∨ ¬𝑔1 ∧ (¬𝑟2 ∨ ¬𝑔2)

System:
• Initially:
¬𝑔1 ∧ ¬𝑔2

• Transition: 
¬𝑔1 ∨ ¬𝑔2 ∧

(𝑔1 ↔ 𝑟1) → 𝑔1 ↔ 𝑔1 ∧

(𝑔2↔ 𝑟2) → 𝑔2 ↔ 𝑔2
• Good things:

𝑔1 = 𝑟1 ∧ (𝑔2 = 𝑟2)



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 123

Result of Synthesis

r1:0,r2:0,g1:0,g2:0 r1:0,r2:1,g1:0,g2:0 r1:0,r2:1,g1:0,g2:1 r1:0,r2:0,g1:0,g2:1

r1:1,r2:0,g1:0,g2:0 r1:1,r2:1,g1:0,g2:0 r1:1,r2:1,g1:0,g2:0 r1:1,r2:1,g1:0,g2:1 r1:1,r2:0,g1:0,g2:1

r1:1,r2:0,g1:1,g2:0 r1:1,r2:1,g1:1,g2:0

r1:0,r2:0,g1:1,g2:0 r1:0,r2:1,g1:1,g2:0

r1:0,r2:0,g1:0,g2:0



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 124

But why do you embed safety?

• We started from:

𝜃𝑒 ∧ 𝜌𝑒 ∧ (∧𝑗 𝐴𝑗) → 𝜃𝑠 ∧ 𝜌𝑠 ∧ (∧𝑖 𝐺𝑖)

• And ended up with:

∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖
with some modifications to permitted moves in 2ℐ∪𝒪.

• Are the two the same?
• No!
• What’s the difference?
– Realizability in our game implies realizability of the general 

formula.
– Other direction is not true.



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 93

Some applications



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 142

../Movies/sim_multi_run_5_320X360_world.avi
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movies/sim_multi_run_5_320X360_world.avi


Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 143

file://localhost/Users/np183/Verif/prof/fsim/synthesis/presentation/Movies/sim4.avi
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movies/sim4.avi


Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 144

Realizable

Unrealizable

Hybrid Controller

FSM
Specification

Synthesis   

Specification Analysis

Physical Robot
Simulation

Robotics Approach Overview



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 145

file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/ISRR19_0049_VD_fi.mp4


Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 146

04:5801:0001:23

file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/RALEvBasedSTL.mp4
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/RAL2022EvSTL_Short.mp4
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/PhysVideo.mp4


Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 147

Iterator-Based Temporal Logic Task Planning
Sebastián A. Zudaire; Martin Garrett; Sebastián Uchitel



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 149



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 94

Bibliography

1. Safraless Decision Procedures (O. Kupferman and M.Y. Vardi), FOCS 2005, 531-542.
2. Bounded Synthesis (B. Finkbeiner and S. Schewe), STTT, Vol. 15, No. 5-6, pp. 519-

539, 2013.
3. Unbeast: Symbolic Bounded Synthesis (R. Ehlers), TACAS 2011, 272-275.
4. Synthesis of Reactive(1) Designs (R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, 

and Y. Sa'ar), Journal of Computer and System Sciences, Vol. 78, No. 3, 911-938, 2012. 
5. Valet Parking Without a Valet (D.C. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, 

and G.J. Pappas), Conference on Intelligent Robots and Systems 2007, 572-577.



Lecture 4: Bypassing Determinization N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 95

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Current Research Directions

Lecture5.pptx


Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 154



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 182

Distributed Synthesis

• We want to co-synthesize controllers that will control different variables and 
collaborate.

• An architecture 𝐴 = (𝑃, 𝑒, 𝒱, 𝐼, 𝑂), where:
– 𝑃 is a set of processes.
– 𝑒 ∈ 𝑃 the environment.
– 𝒱 set of (Boolean) variables.
– 𝐼: 𝑃 → 2𝒱 input connectivity function.
– 𝑂: 𝑃 → 2𝒱 output connectivity function.
∀𝑝1, 𝑝2. 𝑂 𝑝1 ∩ 𝑂 𝑝2 = ∅
𝒱 =∪𝑝∈𝑃 𝑂(𝑝)

• An implementation for 𝑝 ∈ 𝑃 is 2𝐼 𝑝
+
→ 2𝑂 𝑝 .

As before, we would like to replace 2𝐼 𝑝
+

by some (finite) domain 𝐷𝑝.

• Given implementations {𝑇𝑝}𝑝∈𝑃 for all processes, their composition ∥𝑝 𝑇𝑝 includes all 

possible matching interactions.



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 183

The Synthesis Problem

• Given an architecture 𝐴 = (𝑃, 𝑒, 𝒱, 𝐼, 𝑂) and a specification 𝜑 over 𝒱, do there exists 
implementations {𝑇𝑝}𝑝∈𝑃 such that ∥𝑝 𝑇𝑝 satisfies 𝜑?

• In general the problem is undecidable.
– It is enough to have an architecture with two processes with separate inputs.

– If the architecture contains an information fork, synthesis for it is undecidable. 
• Some architectures are possible:

But complexity is non-elementary.

e

p1 p2
g1 g2

r2r1

e p1 p2 pn



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 184

What are my options?

• Bounded synthesis:
– Use the bounded synthesis for each process separately.
– Synthesize all the processes together.

• Construct dominant strategies inductively:
– For a process construct a dominant strategy for the full specification.
– Extract from the dominant strategy the assumptions for other processes.
– Synthesize a dominant strategy for specification and new assumptions for all 

others.
• Use Zielonka/Asynchronous Automata.
– Communication by synchronous message passing (blocking multicast).
– More architectures are decidable.
– Sending of Full information leads to algorithmic distribution.



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 185

Safety of Learned Behaviour

• Use formal specifications at learning and at runtime:
– Shield synthesis – create controllers that accompany a learner and restrict attention 

to safe actions.



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 186



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 187



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 188

Strategic Reasoning

• Using games and reasoning about strategies for designing multi-agent systems.
• Connections to algorithmic game theory.
• Logics, games, equilibria, …



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 189

Concurrent Game Structures

• A concurrent game structure 𝐺 = ⟨𝐴𝑃, 𝐴𝑔, 𝐴𝑐, 𝑆𝑡, 𝜆, 𝜏, 𝑠0⟩:
– 𝐴𝑃 – atomic set of propositions.
– 𝐴𝑔 – set of agents.
– 𝐴𝑐 – set of actions.
– 𝑆𝑡 – set of states.
– 𝜆: 𝑆𝑡 → 2𝐴𝑃 - labeling function.
– 𝜏: 𝑆𝑡 × 𝐴𝑐𝐴𝑔 → 𝑆𝑡 – transition function.

• History / track: 𝜌 ∈ 𝑆𝑡∗.
• Strategy: 𝑓: 𝑆𝑡∗ → 𝐴𝑐.

• Strategy profile: 𝑓𝑎𝑔 𝑎𝑔∈𝐴𝑔
.

• A strategy profile defines exactly one infinite run. 



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 190

Logics and Equilibria

• Alternating Temporal Logic – quantify existentially and universally about abilities of 
coalitions.

𝑋 𝑃
• Strategy logic – quantify existentially and universally about individual strategies.

∃𝑥1, 𝑥2∀𝑥3, 𝑥4 𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4
∃𝑥1, 𝑥2∀𝑥3, 𝑥4 𝑃 𝑥1, 𝑥2) ∧ 𝑄1 𝑥1, 𝑥4 ∧ 𝑄2 (𝑥2, 𝑥3

• Nash equilibrium – a strategy profile such that if a player deviates, other players can 
join forces to punish them.

• Subgame perfect equilibrium – a strategy profile that is optimal from every location 
in the game.



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 191

Rationality

• What does it mean for an agent to be rational?
• Nash equilibrium in Boolean context?
• Rational synthesis …
• Dominant strategies …
• Good-enough synthesis …



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 155

Related Work / Open Problems

• Other determinization [Křetínský, Esparza, …].
• History Determinization (GFG) [HP06, Boker, Lehtinen, …]
• Partial information [Chatterjee, Doyen, Raskin, …].
• Stochastic elements [Chatterjee, Kucera, …].
• Real time [Alur, Maler, Larsen, …].
• Quantitative Objectives [Henzinger, Kupferman, Raskin, …].
• Distributed Synthesis [Muschol, Finkbeiner, Raskin, Walukiewicz, …].



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 156

Summary

• Theoretical solution well known since 1969/1989.
• Still provides motivation for a lot of theoretical and practical work.
• In theory, theory and practice are the same.
• Thank you.


	Lecture1
	Lecture2
	Lecture3
	Lecture4
	Lecture5



