UNIVERSITY OF
GOTHENBURG

yv

i

Reactive Synthesis

Nir Piterman
University of Gothenburg
Aalborg, June 13, 2022

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

iérc

LL b
seesdoee "
L, o 000 ,°

European Research Council
Established by the European Commission

Lecture 1: Introduction and Background N. Piterman

Programming

public static int [leiodl(int n) {

// PRE: |
// posT: I

int k;

if (n==1) {k=1;} else {k=n+fineiom(n-1);}

return k;

A function defines a relation between inputs and outputs.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 3

Lecture 1: Introduction and Background N. Piterman

Doesn’t quite work ...

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 4

Lecture 1: Introduction and Background

N. Piterman

Computation vs. Reactivity

Computational Programs: Run in order to produce a final result on termination.

Can be modeled as a black box.

Specified in terms of Input/Output relations.

Reactive Programs

Programs whose role is to

mamtain an ongoing
environments.

interaction with their

: A il

Can be viewed as a green cactus (7) o
k 3 A

.El". __|,r

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

Lecture 1: Introduction and Background N. Piterman

Reactive Systems

* Systems whose main aim is to interact rather than compute (OS, driver, CPU, car
controller).

* Main complexity is in maintaining communication with a user / another program /
the environment.

* Reactive systems are notoriously hard to design.

* Major efforts are invested in development and validation of reactive systems.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 6

Lecture 1: Introduction and Background N. Piterman

The Requirement Language

* Correctness of computational programs is expressed as Hoare triples.
tP}C{Q}
* Correctness of reactive programs is expressed as behavioral specifications:
— The behavior of a system is a sequence of system states.
— Specification should tell us when a sequence is good/bad.
— We use temporal logic: connect states through time.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 7

Lecture 1: Introduction and Background N. Piterman

Validating Reactive Systems

* Simulations:
— Run the system and check whether behavior satisfies specifications.
* Model checking:
— Create a comprehensive model of the system and check whether all behaviors
satisty specifications.
* Model checking research:

— Automatic construction of models.

* Predicate extraction.

* Heap analysis.

» Counter-example guided abstraction refinement.
— Techniques for model exploration.

» Efficient enumerative graph exploration.

 Symbolic representation of states.
* Bounded model checking and SAT/SMT solving.

— Specification.
 Expressive specification languages.
» Translation to model exploration.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 8

Lecture 1: Introduction and Background N. Piterman

Synthesis

* Developing systems is hard, expensive, and error prone.
* The common solution is extensive testing and verification.
* If we can verify, why not go directly from specification to correct-by-construction
systems by synthesis?
* Church’s synthesis problem:
Given a circuit interface specification and a behavioral specification:
— Determine if there is an automaton that realizes the specification.
— If the specification is realizable, construct an implementing automaton.
* Circuit interface — partition to inputs and outputs.
* Behavioral specification — description in first order logic.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 9

Lecture 1: Introduction and Background

Synthesis from Temporal Specifications

0,

Vt.—0,(t) V =0,(t)
vt.i(t) > (3t' > t.01(t) V 0,(b))

Vt.o4(t) = (Elt’ <t. (i(t’) AVE <t < t.(=0.(") A ﬂoz(t"))))

Vt.0,(t) = (3t’ < t l(t YAVE <t" < t.(=0.(t") A _loz(t”)))>

(
Vt.o0.(t) - (Vt (01(t yvae <t <t oz(t”))))
-

Vt.o.(t) = [Vt > t (o, vaAt<t” < t'. Ol(t”))))

* Is it possible to realize this specification?

* The formula defines a relation between i: N — {0,1} and
01,0,:N - {0,1}

* We want a function that is a subset.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

N. Piterman

10

Lecture 1: Introduction and Background N. Piterman

Causal
0(0) & (3t.i(t))

* The relation R = {(i,0)|i:N - {0,1},0: N = {0,1},0(0) « (3t.i(t))} is not empty.
* Find a function that implements it.

* The function cannot be clairvoyant.

* It needs to be causal: o(n) = (i I 1)

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 11

Lecture 1: Introduction and Background N. Piterman

Adversarial

vt.i(t) - —o(t)
vt.i(t) - 3t’ > t.o(t)

* There are some input sequences for which this is possible.

* But not all!
* We want a function that can answer all input sequences.
f:{i:{0,..,n} > {0,1} IneN} - {0,1}
* Furthermore, for every i:N — {0,1} the unique o:N — {0,1} such that o(n) = f(i |y) for
every n € N satisfies the specification.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 12

Lecture 1: Introduction and Background N. Piterman

Briet History

* Church’s problem [1965].

 Rabin introduces automata on infinite trees. Effectively, generalizing Biichi’s work on
w-automata to trees [1969].

* Biichi and Landweber define two-player games of infinite duration [1969].

* We now know that the two are effectively the same. These are still the techniques we
use to solve the problem.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 13

Lecture 1: Introduction and Background N. Piterman

Modern Times

* Pnueli introduces linear temporal logic [1977].

. and and Quielle and Sifakis invent model checking [1981].

. and and Manna and Wolper ignore adversarial nature and propose
reduction to satisfiability [1984].

* Pnueli and Rosner establish LTL realizability to be 2EXPTIME-complete.
— This result established realizability and synthesis as highly intractable.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 14

Lecture 1: Introduction and Background N. Piterman

In these Lectures

 Synthesis as a game.
* Simple games (safety, reachability, Biichi).
* LTL Synthesis reduced to solution of parity games.
* Bypassing determinization:
— Safraless approach.
— Restricting the specification langauge.
— Usage of synthesis in robotics.
* Current research direcions:
— Distributed synthesis.
— Safety of learned behaviour.
— Strategic reasoning.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 15

Lecture 1: Introduction and Background N. Piterman

Lectures Outline

* Introduction

* Automata and Linear Temporal Logic
* Games and Synthesis

* General LTL Synthesis

* Bypassing Determinization

* Current Research Directions

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 16

Lecture 1: Introduction and Background N. Piterman

A More Formal Context

* A specification in linear temporal logic over input and output propositions.

* A system will be an automaton with output.

* Input and output are combined to create a sequences of assignments to propositions.
* All possible infinite paths over the automaton should satisfy the specification.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 17

Lecture 1: Introduction and Background N. Piterman

Linear Temporal Logic

* A set of propositions (Prop) denoting the basic facts about the world. Set Prop is
partitioned to inputs 7 and outputs O.
* Linear Temporal Logic formulae are constructed as follows:

pu=plle Apll=ell Ovll @ wllpUepllp Sy
* Other temporal formulae are derived:

—Op=TUy — Eventually.
o= — Always.
—oWi = Uy vILe — Weak Until.
—Op =TSy — Previously.
—Hp=-& ¢ — Historically.

—pBYy=pSyY Vil — BackTo.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 18

Lecture 1: Introduction and Background N. Piterman

LTL Semantics

* Amodel for an LTL formula is an infinite sequence o = gy, gy, ...with a designated
location j = 0.

* Each letter o; is a set of propositions true at time i.

* Formula ¢ holds over sequence o in location i > 0, denoted (o, i) F ¢, if:
— If ¢ is a proposition (0,i) F ¢ & ¢ € o;
— (0,i) E =@ & (0,i) @
—(0,)) Ep1 Vo, © (0,i) F@jor(0,0) E @,
—(g)EQee(gi+1)Egp
— (o)) E@Op<e=i>0and (0,i—1) E @
— (0, i) E@Up, 3k >i.(0,k) Ep,and Vi <j < k. (0,j) E ¢
—(0,i)) E@Sp, Ik <i.(o,k) Ep,and Vi=>j > k. (0,]) E ¢

* Derived:
— (0D EOQeeoIk=i(0k)E@
— (o) EQee=Vk>i.(0,k) E@

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 19

Lecture 1: Introduction and Background N. Piterman

LTL Exercises

(p — OprVvO9)

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 20

Lecture 1: Introduction and Background N. Piterman

Automata

* Systems with discrete states.
* Formally, A = (%, Q, , q¢), where
— 2 —a finite input alphabet.
— (- a finite set of states.
— §:Q X T - 29— a transition function. Associates with state and an input letter a set
of successor states.
— go— an initial state.
* An input word w = gy, 0y, ... is a sequence of letters from X.
* Arunr = qg, (4, ... OVer w is a sequence of states starting from q, such that for every
i > 0 we have qi44 € §(q;, 77).
* An automaton is deterministic if for every g € Q and o € X we have [6(q,0)| < 1.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 21

Lecture 1: Introduction and Background

* Systems with discrete states.

* Formally, M = (%,[Al Q, 6, qo |L

— X -a finite input alphabet.

A —a finite out

but alphabet.

— (- a finite set of states.
— §:Q X T - 29— a transition function. Associates with every state and an input letter
a set of successor states.
— go— an initial state.

e Arunr = (g, q1, -

Mealy Machines

, Where

N. Piterman

L:Q X% = A-an output function. Associates with every transition an output letter.

> 0 we have q;,; € 6(q;,0;).

* The computation correspoinding to r = qg, qy, ...

= (0-0' L(qO' O-O)): (0-1; L(ql, 0'1)), e

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

over wis c

.over w is a sequence of states starting from q, such that for every i

22

Lecture 1: Introduction and Background N. Piterman

Mealy Machines and LTL

* The set of computations of a machine M = (X, A, Q, §, gy, L) is denoted L(M).

* Assume ¥ = 2’and A = 2Y. So input letters are assignments to input propositions and
outputs are assignments to output propositions.

* A machine M satisfies a formula ¢, denoted M = ¢, if every computation in L(M)
satisfies .

* Given an LTL formula ¢ over propositions Prop = J U O we say that ¢ is realizable if
there is a Mealy machine that satisfies it.

* Our task is going to be to find such a Mealy machine or say that it does not exist.

* We will mostly be interested in deterministic machines.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 23

Lecture 1: Introduction and Background N. Piterman

Bibliography
1. Principles of Model Checking (C. Baier and J.-P. Katoen), MIT Press, 2008.
2. Model Checking (E. Clarke, O. Grumberg, and D. Peled), MIT Press, 1999.

3. Handbook of Model Checking (Eds., E. Clarke, T.A. Henzinger, H. Veith), Springer-
Verlag.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 24

Lecture 1: Introduction and Background N. Piterman

Lectures Outline

* Introduction

* Automata and Linear Temporal Logic
* Games and Synthesis

* General LTL Synthesis

* Bypassing Determinization

* Current Research Directions

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 25

Lecture2.pptx

Lecture 2: Games and Synthesis N. Piterman

Realizability

* So, given a property ¢ and a partition Prop = J U O find a system Msuch that M & ¢.
* For every possible input, decide on an output ...
 All paths through the machine should satisty the property.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 25

Lecture 2: Games and Synthesis N. Piterman

Arbiter

Client

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 26

Lecture 2: Games and Synthesis N. Piterman

Arbiter,

* Propositions Prop = {ry,72, g1, 9>}, where J = {ry,r,} and

0 =1{91, 92}
* Requirements:

— Aq: leave requests:[J(r; Al gq 2Or)A(r, Al g, —0T3,)

— G1:leave grants: [1(r; A g1 20g:)A(r5 A g, =0g53)

— G,: mutual exclusion:LI(! g, V! g,)

— G5: deliver and remove grants:[(1< (g, © 1) A9, © 12)
* Or together: A; — (Gy NG, A G3)

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 27

Lecture 2: Games and Synthesis N. Piterman

What's the idea?

* Think about control:
— Some things are under our control.
— Some things are not.
* We want to exercise our control so that to achieve certain goals.
* In some cases the environment is hostile.
* What we want:
— Find a strategy that will guide our actions based on our view of the world.
* This leads to viewing the world as an opponent:
— Exercise control so that uncontrollable events do not lead to damage.
* We model this as two-player games.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 28

Lecture 2: Games and Synthesis

Example: Nim

* Some rows of matches.

* Every player removes in turn at least one match from one row.

 The one to remove last match wins.
* Can you win?

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

f

[

N. Piterman

29

Lecture 2: Games and Synthesis N. Piterman

Whose in Control?

* We use graphs with vertices for states and edges for transitions.
* Ownership is by using two types of vertices.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 30

Lecture 2: Games and Synthesis_ |
Environment

Q System

23

122 113 23 121 13 12
Ll
121 112 22 13 111 21 12 3 11 2
111 21 12 L3) 11 o2 1)
11 2 1

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

N. Piterman

31

Lecture 2: Games and Synthesis N. Piterman

Arbiter

Client

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 32

Lecture 2: Games and Synthesis N. Piterman

0.0.1.0 0000 oo
0.0,0,1 La | -’ 1,0,0,0
1.0,1.0
1.0, 1,1
L1
- ’ 1.1,0,1
5 =

j 1
&0,1,0,1 > /

0.1,0,0

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 17 1: 1: 0 33

1.1,0,0

Lecture 2: Games and Synthesis N. Piterman
* Formally, a game is G = (V,V,, V4, E, @), where

Games
O
Qo
— V is a set of nodes.

— Vp and V; form a partition of V. \S@ \
— E C V XV isasetof edges. ,O Q'

* Aplayism = vy, vy, ... O eﬂ'
QT Ay

— « is a set of winning p O

* Astrategy for play~ ‘0 &Q 7= V such that (v, f;(w - v)) € E.

* Aplaym = vy~ (0 00« ; if for every j = 0 such that v; € V; we have
vi+1= fi(Vo ‘Q&O (S*O

* Astrategy foi &e ng if every play compatible with it is in a. A strategy
for player 1 is o ery play compatible with it is not in a.

* Anode viswon__fayer i if she has a winning strategy for all plays starting from
V.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 34

Lecture 2: Games and Synthesis N. Piterman

Control Predecessor

* In control it is easier to walk backwards.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 35

Lecture 2: Games and Synthesis_ |
Environment

Q System

Game Analysis

123
122 113 23 121 13 12
121 112 22 13 111 21 12 3 11
111 21 12 (3) 11 2) 1
\‘-\._ N A B _.-/ N
11 2 1

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

N. Piterman

36

Lecture 2: Games and Synthesis N. Piterman

Control Predecessor (for PP0)

* Start from an set of nodes W < V/.
* We want to say:

— The system can force the environment to W in one move.
* That is:

— Nodes v € V, for which some successor is in W,

— Nodes v € V/; for which all successors are in /.
* Formally:

cpre(W) ={veV,|av eW.(v,v') EE} U
flvelV, IvVv.(v,v')€EE - v € W}

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 37

Lecture 2: Games and Synthesis N. Piterman

Control Predecessor (for P1)

e Start from an set of nodes W C V.
* We want to say:
— The environment can force the system to W in one move.
* That is:
— Nodes v € I/; for which some successor is in .
— Nodes v € V, for which all successors are in W,
* Formally:
cpree(W) ={velV, |v eW.(v,v')EE} U
fvely,|Vv'.(v,v')€EE - v' € W}

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 38

Lecture 2: Games and Synthesis N. Piterman

Let’s solve some games!

Lecture 2: Games and Synthesis N, Piterman] Lecture 2: Games and Synthesis N. Fiterman)

Cp O

[Reactive Synthesis, MOVEP Summer School, Aa]bor& 2022 35 JReactive Synthesis, MOVEP Summer School, Aalbor% 2022 [%]

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 39

Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 55

Lecture 2: Games and Synthesis N. Piterman

P

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 56

Lecture 2: Games and Synthesis N. Piterman

P

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 57

Lecture 2: Games and Synthesis N. Piterman

Safety Games

* Check that PO can enforce [Ip.

1. fix (new :=p)
2. new := new A cpre(new)
3. end// fix

Lemma. The algorithm computes the set of states winning for PO with objective [p.
Proof. Later.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 58

Lecture 2: Games and Synthesis N. Piterman

Reachability Games

« Check that 1 can enforce O—p.

1. fix (new := —p)
2. new := new V cpreq(new)
3. end// fix

Lemma. The algorithm computes the set of states winning for 1 with objective {p.
Proof. Later.

Attr; (W) the set of nodes from which player i can force reaching V.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 59

Lecture 2: Games and Synthesis N. Piterman

Safety vs Reachability Games

* Goals [p for PO and & —p for P1 are complementary:.

1. fix (new :=p) 1. fix (new := —p)
2. new := new A cpre(new) 2. new := new V cpreq(new)
3. end// fix 3. end// fix

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 60

Lecture 2: Games and Synthesis N. Piterman

Safety Games

* Check that I’0 can enforce [}p.

1. fix (new :=p)
2. new := new A cpre(new)
3. end// fix

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 61

Lecture 2: Games and Synthesis N. Piterman

P]j‘()()f 1. fix (new :=p)
2. new := new A cpre(new)
3. end// fix

* Suppose that new is not empty.

Consider v € new. Clearly, v € p. But also v € cpre(new).
If v € V,, then v has a successor w such that w € new.
If v € V3, then for every successor w of v we know w € new.

* If there is a strategy s.t. every play compliant with it wins[]p.
Let new,, new,, new,, ... be the series of approximations of new. We prove by
induction that for every v winning for PO, v € new;, for every i.

Clearly, v € p implies v € new,,

Assume every v winning for 0 is in new. for some i. Consider v € V; winning for P0.
Then, there is w such that (v, w) € E and w winning for P0. Then, w in new; and v in
new,,,. Consider v € V; winning for 0. Then, for every w such that

(v,w) € E we have w winning for 0. Then, every w such that (v,w) € E is in new..
S0 v in new,, .

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 62

Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 63

Lecture 2: Games and Synthfis N. Piterman

) - -

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 64

Lecture 2: Games and Synthfis N. Piterman

5
o @ O

(

/’v —
1 7

L 0

(-

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 65

Lecture 2: Games and Synthfis N. Piterman

) - -

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 66

Lecture 2: Games and Synthfis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 67

Lecture 2: Games and Synthfis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 68

Lecture 2: Games and Synthfis N. Piterman

\
-

=

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 69

Lecture 2: Games and Synthfis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 70

Lecture 2: Games and Synthesis N. Piterman

Biuichi Games

 Check that PO can enforce[Jp.

fix (greatest := 1)
fix (least := p A cpre(greatest)
least := least V cpre(least);
end // fix least
greatest := least;
end // fix greatest

Lemma. The algorithm computes the set of nodes winning for PO with objective L1np.

o uhswWwNE

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 71

Lecture 2: Games and Synthesis N. Piterman

Biuichi Games

 Check that 0 can enforce (1.

fix (greatest := 1)
fix (least := p A cpre(greatest)
least := least V cpre(least);
end // fix least
greatest := least;
end // fix greatest

o uhswWwNE

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 72

Lecture 2: Games and Synthesis N. Piterman

Proof (Control of Biichi -Soundness)

1. fix (greatest :=V)

2 fix (least := p A cpre(greatest)
3. least := least V cpre(least);
4. end // fix least

5 greatest := least;

6. end// fix greatest

* Suppose that greatest is not empty. For the fixpoint to
terminate, the inner fixpoint starting from this value
recomputes it.

* Let least, least;, least,, ... be the sequence of values that least has through the
computation of this last iteration.

* Consider v € greatest. Let i be the index such that v € least . By definition of
cpre(+), PO can force a successor w of v. But then, w € least for some 1 <lp-

* This shows that PO can ensure to reach least,= p A cpre (greatest) So it ensures
a visit p.

* But now least, = p A cpre(greatest). So in the next step PO forces least; for
some j and repeat this process.
* PO can enforce [JOp.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 73

Lecture 2: Games and Synthesis N. Piterman

Proof (Control of Biichi - completeness)

. fix (greatest := V)
fix (least := p A cpre(greatest)

1

2

3, least := least V cpre(least);
« If there is a strategy f s.t. every play compliant with it 1 en def/s .y Ieeaii cpre(least)

5

6

wins <>p. greatest := least;
* Every node v from which f is winning - end//fix greatest

remains in every approximation of the fixpoint greatest:

— From v there is a maximum on the length of paths to reach p (Konig’s lemma).

— Prove by induction on the number of iterations in the first fixpoint that
win& greatest.

— For greatest, = I/ this is clear.

— Assume win& greatest;. Then for every node v € win it must be that v € least; for
the distance to reach p A win.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 74

Lecture 2: Games and Synthesis N. Piterman

Strategy

* A strategy is the way of enforcing the goal.

* Let D be some memory domain and let d, be an initial memory value. Elements in
the memory domain recall facts about the history of play so far.

- A strategy for player i is a function f;: V* - V; - V such that (v, f;(w - v)) € E.

* We look to replace V" by some (finite) domain D. Then, instead of considering I/ we
could consider D X V.

* The strategy is replaced by two functions:

— Move function: f{™:D x V; - V s.t. (v,f(d,v)) €E.
— Update function: f;:D XV — D.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 40

Lecture 2: Games and Synthesis N. Piterman

What about Synthesis?

* Our goal is to construct a Mealy machine that realizes the specification.
— A Mealy machine from every state reads input and answers with output.
* Anode in the game corresponding to choice of
input will be followed by node corresponding
to choice of output.
» We can define a specialized game with nodes in 2797,
* We can define the winning condition with an LTL formula over 7 U O. A play
naturally corresponds to a possible model.
* For a set of nodes I/, define
cpre(W) ={v|vxe2’.3ye2% (xuy)eWw}
» When computing the set of winning states, check that for every x € 27 there is y € 2¢
such that x U y is winning.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 43

Lecture 2: Games and Synthesis N. Piterman

Further Specialize Strategy

* Let D be some memory domain and let d, be an initial memory value. Elements in
the memory domain recall facts about the history of play so far.

- A strategy for player i is a function f;: V* - V; — V such that (v, f;(w - v)) € E.

* We look to replace V" by some (finite) domain D. Then, instead of considering I/ we
could consider D X V.

* The strategy is replaced by two functions:

— Move function: f/™: D x V; - V s.t. (v,f(d,v)) €E.
— Update function: f;: D XV = D.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 44

Lecture 2: Games and Synthesis N. Piterman

Further Specialize Strategy

* Let D be some memory domain and let d, be an initial memory value. Elements in
the memory domain recall facts about the history of play so far.

+ A strategy for player i is a function f;: (2799)" - 27 — 20,
* We look to replace V" by some (finite) domain D. Then, instead of considering I/ we

could consider D x V.
* The strategy is replaced by two functions:

— Move function: f{™:D x V; - V s.t. (v,f(d,v)) €E.
— Update function: f;: D XV = D.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 45

Lecture 2: Games and Synthesis N. Piterman

Further Specialize Strategy

* Let D be some memory domain and let d, be an initial memory value. Elements in
the memory domain recall facts about the history of play so far.

+ A strategy for player i is a function f;: (2799)" - 27 — 20,
» We look to replace (27Y9)" by some (finite) domain D. Then, instead of

considering(279?) we could consider D x 277

* The strategy is replaced by two functions:
— Move function: fj™: D X V; = V s.t. (v,f(d, v)) eE.
— Update function: f;*:D x V - D.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 46

Lecture 2: Games and Synthesis N. Piterman

Further Specialize Strategy

* Let D be some memory domain and let d, be an initial memory value. Elements in
the memory domain recall facts about the history of play so far.

+ A strategy for player i is a function f;: (2799)" - 27 — 20,
» We look to replace (27Y9)" by some (finite) domain D. Then, instead of

considering(279?) we could consider D x 277
» The strategy becomes f;: D x 27 - D x 2C.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 47

Lecture 2: Games and Synthesis N. Piterman

From Strategy to System

Consider a strategy fy: D x 27 - D x 2% and let d, € D be the initial memory value.
Construct the machine M = (X, A, D, §,d,, L) with:

=27

A =20

6(d,i) = fod, i) U4

L(d, l) — fo(d, l) UZ
What's the memory domain in the cases we’ve seen?

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 48

Lecture 2: Games and Synthesis N. Piterman

Winning — Realizability

Consider arunr = qg, g4, ... OVver w = ag, g4, ... and the
corresponding computation ¢ = (00, L(q,, JO)), (01, L(qq, 01)), ... of
M.

i. Foreveryi € 27 thereiso € 29 s.t. (i,0) is winning.

ii. By f winning c satisties the formula.

Realizability - Winning

Take a machine M and use it to construct the winning strategy.
A play in the game is a computation of the machine.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 49

Lecture 2: Games and Synthesis N. Piterman

Memorize Intermediate Values

1. fix (greatest := V) 1. fix (greatest := 1)
2. fix (least :=p A cpre(greatest) 2. cY =0;
3. least := least V cpre(least) 3. fix (least :=p A cpre(greatest)
4. end// fix least 4 y[cY]:= least;
5. greatest :=least 5. least := least V cpre(least)
6. end // fix greatest 6 cY =cY + 1;

7. end// fix least

8. greatest :=least

9. end // fix greatest

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 50

Lecture 2: Games and Synthesis N. Piterman

Construct the Realizing Machine

* Given G = (2799 u (27Y9 x 27), 2790 x 27,2799 E, OO p).
E={((0) @0,i))(00,i") 3G, 0")}
« Constructa M = (27,29,2799 5, s,,L):
, _ {(i",0") | (i",0") is winning} (i,0) Ep
5)) ' — . / . / . . .
(@) = Ve, 0 1 @0 eyl <1} (o) € ylj+1]

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 51

Lecture 2: Games and Synthesis N. Piterman

Summary

e Starting from an LTL formula ¢, construct the game
G = (27U0 U (27U0 X 27), 2IU0 27, ZJUO,E,('D>.
* Compute the set win.

 If for every i € 27 there is 0 € 2Ysuch that (i, 0) Ewin then declare ¢ realizable.
* Extract from the winning strategy a realizing Machine.

* But we only know to solve reachability/safety and Biichi games.
* What about general LTL?

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 52

Lecture 2: Games and Synthesis N. Piterman

Bibliography

1. Infinite Games (R. Mazala), in Automata, Logic, and Infinite-Games (Eds., E.
Gradel, W. Thomas, and T. Wilke), Springer-Verlag, 2002.

2. Supervisory control of a class of discrete event processes (P. J. Ramadge and W. M.
Wonham), SIAM |. Control and Optimization, Vol. 25, No. 1, pp. 206-230, 1987.

3. On the Synthesis of Discrete Controllers for Timed Systems (O. Maler, A. Pnuelj,
and J. Sifakis), STACS 1995: 229-242.

4. An 0(n?) time algorithm for alternating Biichi games (K. Chatterjee and M.
Henzinger), SODA 2012: 1386-1399.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 53

Lecture 2: Games and Synthesis N. Piterman

Lectures Outline

* Introduction

* Automata and Linear Temporal Logic
* Games and Synthesis

* General LTL Synthesis

* Bypassing Determinization

* Current Research Directions

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 54

Lecture3.pptx

Lecture 3: General LTL Synthesis N. Piterman

From Logic to Graphs?

How to embed the logical winning condition
into the graph notation?

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 72

Lecture 3: General LTL Synthesis N. Piterman

Automata as Acceptors

/\/
* Systems with discrete states. 0
€4
* Formally, A = (%, Q, 6, qo,|2)), where @17?21
— 2 —a finite input alphabet. OJSfJ
— (- a finite set of states. 05)

— §:0 X ¥ — 29— a transition function. Associates with £tate a1/7’ 4 g, ‘nput letter a set
of successor states.

— go— an initial state.

—|la € Q- a set of accepting states.

* An input word w = gy, 0y, ... is a sequence of

* Arunr = qg, (4, ... OVer w is a sequence of sfates starting from q, such that for every
i > 0 we have qi44 € §(q;, 77).

* A run is accepting if for infinitely many i € N we have q; € a.

* A word is accepted if some run over it is accepting.

* The language of A, denoted L(A), is the set of words accepted by A.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 73

Lecture 3: General LTL Synthesis N. Piterman

From LTL to Buichi Automata

Theorem. Given an LTL formula ¢ we can construct a nondeterministic Btichi
automaton N, such that L(N¢) = L(p).
The size of N, is exponential in the length of ¢.

Intuitively, if sub(¢) is the set of subformulas of ¢, a state of N, corresponds to a set of
subformulas that are true (in an accepting run).

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 74

Lecture 3: General LTL Synthesis

Control with Automaton Observer

Visit finitely many not-p’s <>

Environment

< > System W
G

(o)

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

)

N. Piterman

75

Lecture 3: General LTL Synthesis N. Piterman

NBW for $Op

* NBW for ¢ =[] p:

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 76

Lecture 3: General LTL Synthesis N. Piterman

Nondeterminism is bad

: e />
nvironment

o[o)1
Q System </‘

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 77

Lecture 3: General LTL Synthesis N. Piterman

What went wrong?

* The automaton is nondeterministic.
* [t makes predictions regarding the future and aborts runs that do not match these
predictions.
* In the context of games nondeterminism is added as choice of one side:
— If the system resolves nondeterminism, it has to find a solution that matches all
possible futures.
— If the environment resolves nondeterminism, the system must force all runs to be
accepting.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 78

Lecture 3: General LTL Synthesis N. Piterman

Solution: Determinism

o [f the automaton were deterministic, there would be no added choice!

* We create a synchronous parallel composition of the automaton with the game.
* Solve the resulting game.

* Extract system from winning strategy.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 79

Lecture 3: General LTL Synthesis N. Piterman

Automata as Acceptors

. Y,
* Systems with discrete states. 12(}’@1(
* Formally, 4 = (%, Q, 6, qo,[a)), where @Ob[.
— 2 —a finite input alphabet. Olééb
— Q- a finite set of states. pa,,

— §:Q X ¥ - 29— a transition function. Associates with sjdte anc P ot letter a set
of successor states. “ 1;2(9

— go— an initial state. @

—|a: Q0 —» N-a ranking of states.

* An input word w = gy, 0y, ... is a sequence of lefters from X.

* Arunr = qg, qq, ... OVer w is a sequence of states starting from q, such that for every
i > 0 we have qi44 € §(q;, 77).

* A run is accepting if for the(minimum rank to occur infinitely often is even.

* The language of 4, denoted L(M), is the set of words accepted by A.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 80

Lecture 3: General LTL Synthesis N. Piterman

Synchronous Composition of Games

* Consider a game G = (V,V,, V4, E, ¢) and a deterministic (with respect to entire
alphabet X) automaton 4, = (%, D, 6, dy, f)-
* Their synchronous parallel composition (G || A,) is the game,
G = (V,V,, V,,E,v) where:
— V = D X V —anew node holds a game node and an automaton state..
—E={(d,v),d,v)| (v,v') €eEand d = 6(d, L(v))}- the transitions of the
automaton are updated.
— y(d,v) = [(d) — acceptance only considers the acceptance of the automaton.
* The results is a parity game.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 81

Lecture 3: General LTL Synthesis N. Piterman

Deterministic Automata Work!

Theorem. PO wins ¢ with winning condition ¢ iff PO wins G || A,,, where 4, is a
deterministic automaton for ¢.

= If PO wins G all she has to doin G || 4, is to use the same strategy. Every play in G |
A, corresponds to a play in G and the unique run of A,that reads this play. But the
play satisfies ¢, so the run must be accepting. So the play in G || 4, is winning for P0
as well.

<1f PO wins G || A, she can use the states of A, as (part of) the memory in G. She will

then be able to use the winning strategy from G || A,,. Now, a play in G corresponds
to an accepting run of 4,. But then the play satisfies ¢, which means that 0 wins.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 82

Lecture 3: General LTL Synthesis N. Piterman

Iwo tiny 1ssues ...

* How do we get a deterministic parity automata for LTL?
* How do we solve a parity games?

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 83

Lecture 3: General LTL Synthesis N. Piterman

Deterministic Automata

* Well, the answer is simple: construct a nondeterministic automaton and determinize
it!

» Starting from an automaton with n states:
— Create an automaton with 0((n!)?) states and 2n rank.

* Subset construction augmented with a tree structure. Will not be shown.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 84

Lecture 3: General LTL Synthesis N. Piterman

Solving parity Games

Func main()
1. Return even_parity(0, @);
End // Func main

Func even_parity(i, win)

1. fix (greatest :=V)

2 greateast := win V ({v|a(v) = i} A cpre(greatest))
3 if (i'=max)

4. greatest := odd_parity(i+1, greatest)

5. end// fix greatest

6. Return greatest;

End // Func even_parity

Func odd_parity(i, win)

1. fix (least := @)

2 least:= win V ({v|a(v) = i} A cpre(least))
3 if (i'=max)

4. least := even_parity(i+1, least)

5. end// fix least

6. Return least;

End // Func odd_parity
Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 85

Lecture 3: General LTL Synthesis N. Piterman

Proof (Soundness)

* Suppose that win is not empty. Have the intermediate least fixpoint approximations:
leastg, leastf, leastg, ... for an odd parity p.

* Consider v € win. Let i, i3, ..., [,,, be the indices such that v € least{j. By definition of

cpre(-), PO can force a successor w of v. But then, either (a) for some even j we have
v € a(j) and w has i1, i3, ..., i, such that for j* < j we have i;, < i]f, or (b) there is some

. «f «f . f . f . «f _ «f " «f «f
j such that w has iy, i3, ..., ij,, for j° < j we have i;, = Lir, and for j we have i; < i;.

* Consider an infinite path and what happens to these numbers. There must be an even
priority that is “reset” infinitely often, showing that I’0 wins.

Func odd_parity(i, win) Func even_parity(i, win)

1. fix (least:= Q) 1. fix (greatest:=V)

2 least:= win V ({v]|a(v) = i} A cpre(least)) 2 greateast:= win vV ({v|a(v) = i} A cpre(greatest))
3 if (i'l=max) 3 if (i'=max)

4, least := even_parity(i+1, least) 4, greatest := odd_parity(i+1, greatest)

5. end// fixleast 5. end//fix greatest

6. Return least; 6. Return greatest;

End // Func odd_parity End // Func even_parity

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 86

Lecture 3: General LTL Synthesis N. Piterman

To Summarize ol =n

\

» Start with a game structure ¢ with winning condition ¢.

* Construct a deterministic automaton 4, for ¢.

* Construct the product G || 4. N 4, = 520(nlog)
* Solve the game G || A,,. v
* Construct a winning st

* Construct from the winnin
realizing ¢.

la| = 2"

egy for G |l A,.
trategy a Mealy machine

20(n2 log n)

2
The problem is 2EXPTIME-complete.

* Determinization is an issue.
* Practical solutions of parity games.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 89

Lecture 3: General LTL Synthesis N. Piterman

Bibliography

1. Reasoning About Infinite Computations (M.Y. Vardi and P. Wolper), Information and
Computation, Vol. 115, No. 1, pp. 1-37, 1994.

2. Simple On-The-Fly Automatic Verification of Linear Temporal Logic (R. Gerth, D.
Peled, M.Y. Vardi, and P. Wolper), Protocol Specification, Testing, and Verification 1995:
3-18.

3. On the Synthesis of a Reactive Module (A. Pnueli and R. Rosner), POPL 1989: 179-
190.

4. Determinization of Buichi-Automata (M. Roggenbach), in Automata, Logic, and
Infinite-Games (Eds., E. Gradel, W. Thomas, and T. Wilke), Springer-Verlag, 2002.

5. On the Complexity of w-Automata (S. Safra), FOCS 1998, 319-327.

6. From Nondeterminstic Biichi and Streett Automata to Deterministic Parity
Automata (N. Piterman), Logical Methods in Computer Science, Vol. 3, No. 3, pp. €5,
2007.

7. Algorithms for Parity Games (H. Klauck), in Automata, Logic, and Infinite-Games
(Eds., E. Gradel, W. Thomas, and T. Wilke), Springer-Verlag, 2002.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 90

Lecture 3: General LTL Synthesis N. Piterman

Lectures Outline

* Introduction

* Automata and Linear Temporal Logic
* Games and Synthesis

* General LTL Synthesis

* Bypassing Determinization

* Current Research Directions

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 91

Lecture4.pptx

Lecture 4: Bypassing Determinization N. Piterman

Two Ways to Avoid Determinization

* Replace by Countlng: mememe '[B' }z:‘;\Diltm:;?:h Theoretic Approach to LTL Model Lheckm& o

* Givi Mlymah I ().A(}),l)ltf a formula ¢, denoted M = ¢,

— Search for bounded strategy. o

+ Use autor t f 11 h k g
— Construct a i Biichi automaton N_, such that L(N,,) = (£ x 8)“ \ L(¢).

— Express winning through safety games.

-IfMxN . accepts some word, the word corresponds to a computation in L(M) not

satisfying .
* Our goal:

— Limited determinization through counting. Sty e vt s 1. oy

— Translate to an SMT problem.
 Concentrate on simpler specifications:

— Both system and environment are Biichi automata.

— Enforce “deterministic” specification.

— State-space exponential. Exponent linear.

Lecture 4 Bypassing Determinization N. Piterman]

Take Another Look at Machines

* Amachine M = ()ZAQo, L), wher
7]

¥ = 2”-a finite input alphabet.
—A~2“ ite i}t];llt
-Q= z*~ set of state
* Express as an LTL formula overJUO U X:
= qo-
6 = Vyep? (x,L(g0,X)) A 8(q0,%)
8:Q x

p = (Aqeqres? (4 AOx — OL(4, %) Vyes(q.0/00))
* We may want to add some “good things” happen often enough:
A OO (Vgeq; a)

* Overall:

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 92

Lecture 4: Bypassing Determinization N. Piterman

The Automata Theoretic Approach to LTL Model Checking

* Given a Mealy machine M = (%, A, Q, 8, qo, L), M satisfies a formula ¢, denoted M & ¢,
if every computation in L(M) satisfies ¢.
* Dually, M satisfies a formula ¢ if no computation in L(M) satisfies —¢.
 Use automata for model checking:
— Construct a nondet Biichi automaton N_, such that L(NQD) = (X A)®\ L(¢p).
— Take the product of M and N_, as a nondet Blichi automaton.
—If M X N_, accepts some word, the word corresponds to a computation in L(M) not
satistying ¢.
* Our goal:
— Find a Mealy machine M and show that M X N_, is empty.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 96

Lecture 4: Bypassing Determinization N. Piterman

Nondeterministic Buichi Automata

* Systems with discrete states.
* Formally, A = (%, Q, 6, qo, @), where
— 2 —a finite input alphabet.
— (- a finite set of states.
— §:Q X T - 29— a transition function. Associates with state and an input letter a set
of successor states.
— go— an initial state.
— a € (J— a set of accepting states.
* An input word w = gy, gy, ... is a sequence of letters from 2.
* Arunr = qg, (4, ... OVer w is a sequence of states starting from q, such that for every
i > 0 we have qi44 € §(q;, 77).
* A run is accepting if for infinitely many i € N we have q; € a.
* A word is accepted if some run over it is accepting.
* The language of A, denoted L(A), is the set of words accepted by A.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 97

Lecture 4: Bypassing Determinization N. Piterman

LTL Model Checking

Theorem. Given an LTL formula ¢ over propositions 7 U 0 we can construct a nondet
Biichi automaton N_,, over alphabet 27““such that L(N_,,) = (27Y9)“ \ L(¢).

* We have:

— Mealy machine M = (27,27,Q, 6, q,, L)

— Biichi automaton N_, = (2799, S, p, s, @)
e Construct:

— M xN_, =(27Y9,0 x5,8',(q0,50), Q X), where

§'((q,5), (1,0)) = {(q',sN16(s,0) = s',L(s,i) = 0,and q' € p(q, (i,0))}

* An accepting runr = (qq, Sg) , (41, 51), ... on word w = gy, 04, ... is exactly a

computation of M accepted by N_,.

* But we are interested in the case that M = ¢ ...

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 98

Lecture 4: Bypassing Determinization N. Piterman

Analyze the Graph

* Assume that M X N_, = (27U0, QxS,6",(qg,S0), Q X a) is empty (M E ¢).
* Every run of M X N_, contains finitely many accepting states in ¢ X a.
* But how many?
— Think about M X N_, as a graph.
— If there are more than || - |S| accepting states on a path then this is an accepting
loop.
— CreI;te a proof that M X N_, is empty by adding a function f: Q X § — N such that:
* f(q0,50) = |a| - |S]
o If for some (i,0) we have (q',s') € 5’((q, s), (i, 0)) then:
—Ifseathen f(q,s) > f(q',s).
—Ifs¢ athen f(q,s) = f(q,s").

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 99

Lecture 4: Bypassing Determinization N. Piterman

Bounded Synthesis

* Remember, given ¢ (and N_, = (27Y9.S p, s, a)) we want a machine M s.t. M & ¢.
* What if we search for a machine with at most m states?
* We can just “nondeterministically guess” its structure along with the proof that it
satisfies .
* Create an SMT instance I
— Variables encoding transitions:
Forje€ {1,..,m}and o € 2’ have tr; , € {1, ..., m}.
— Variables encoding outputs:
Forj € {1,..,m}and o € 27 have lis € 29,
— Variables encoding Biichi proof:
Forj€e{1,..,m}and s € Shave fj; € {0,...,m - |S|, T} (T > T and for all k, T > k).
— Add constraints:
f 0,So =
If s" € p(s,0,lj;)and s € a then f; ¢ > ftr; gsr-
Ifs" € p(s,0,lj;)and s € a then f; ; = ftrj’ms,.
* If I' is satisfiable there exists a machine of size at most m realizing ¢ and it can be
extracted from the satisfying assignment.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 100

Lecture 4: Bypassing Determinization N. Piterman

Advantages

* Simple structure of states.
— Replace the tree structure over sets of states by a function from states to ranks.
— Determinization is a challenge for implementation.
* Safety games compared with parity games.
— Solution of safety games is much simpler.
— Exact complexity and practical solving of parity games are interesting open
problem:s.
* Search for small machines first.
— By increasing the bound gradually we can ensure to find small implementations
first (and compute less).
— Information from failed search for small sizes can be reused for searching for larger
sizes.
— Worst case complexity is as the general technique.
* Add additional quality constraints.
— Low number of loops ...

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 101

Lecture 4: Bypassing Determinization

Take Another Look at Machines

« Amachine M = (X, A, 0, 6, qq, L), where

— ¥ = 27-a finite input alphabet.

— A = 29-a finite output alphabet.

— Q = 2*—a finite set of states.

* Express as an LTL formula over 7 U O U X:

— {o-

0 =V, cy (x, L(qo,x)) A6(qg, X)

—5:0xX— 29

p = (AqEQ,x627 (q NOx - OL(q, x) qu5(q,g)OCI))
* We may want to add some “good things” happen often enough:

e Overall:
g A

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

p AN

/\i <> (VqEGi CI)

& (VCIEGi q)

N. Piterman

102

Lecture 4: Bypassing Determinization N. Piterman

Arbiter

Client

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 103

Lecture 4: Bypassing Determinization N. Piterman

Translate to LTL
* Variables:
J={r,n}
0 ={91,92}

* Initially:
—|7‘1 /\ _IT'Z /\ _'.91 /\ _Igz
* Transition:
((Tl/\ _'gl) - OT1) If requesting, stay until granted
((—lT'l Agy) = O —|T'1) Don’t reuse grants
((r2A =g2) 2 OT12)
(=12 A g2) = O2)
(_'gl v _'gz) }— Mutual exclusion
((91 <_>Or1) - (91 HOgl)) }_ Don’t grant w.o. request

Don’t take away used grants
((QZHOrz) - (g2 ‘_’ng))
* Good things:

Olgr =) AOO(g2 =12)

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 104

Lecture 4: Bypassing Determinization N. Piterman

Separate to Assumptions and Guarantees

Environment: System:

* Initially: * Initially:
=y Ay =191 N\ 19>

 Transition: * Transition:
((7"1/\ —g1) 07”1) A (mg1V —g2) A
((_'7”1 ANgi) 2O —rrl) A ((91 ©Q0r) - (g “’Ogﬂ) A
((rz/\ —g,) = Qrz) A ((92“’07”2) - (g2 “’ng))
((_'7"2 Ng2) 2O —17‘2) * Good things:

O g =) AOO (g2 =172)

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 105

Lecture 4: Bypassing Determinization

The Goal for Synthesis

(6 A

pe) = (65 A

* This still does not look very simple ...

* Can we do anything with the bits 6,, 6,

Ps A (/\i

P, and

— 6. can be used to restrict the initial moves of I°0:

For every initial input there is initial output satistying 6; ...
— [p, can be used to restrict the transitions of I0.
— What if we use 6, and Llp, to restrict the moves of P1?

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

D)

Ps?

N. Piterman

106

Lecture 4: Bypassing Determinization N. Piterman

0.0.1.0 0000 oo
0.0,0,1 La | -’ 1,0,0,0
1.0,1.0
1.0, 1,1
L1
- ’ 1.1,0,1
5 =

j 1
&0,1,0,1 > /

0.1,0,0

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 17 1: 1: 0 107

1.1,0,0

Lecture 4: Bypassing Determinization

0,0, 1,0
0.0,0,1 C
0.0,0,0
0.1,1,0
1
0.1,0, 1 -
0.1,0,0

1.0.0,1

1.0,0,0

7.0,1,0

T.1,0, 1

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

1,1,1,0

1,1,0,0

N. Piterman

108

Lecture 4: Bypassing Determinization

What's left?

(N A

AN fn

A

o)
\Uel\ fjej ’\Usl\
* This is slightly more complicated than response. We call it generalized Biichi.

Blchi:
1. fix (greatest := V)

2 fix (least := G A cpre(greatest)
3. least := least V cpre(least);
4. end // fix least

5. greatest := least;

6. end// fix greatest

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

Ps 7x (/\i <> Gi))

Generalized Bichi:

1.
2.

O N AW

fix (greatest := V)
foreach (G;)
fix (least := G; A cpre(greatest)
least := least V cpre(least);
end // fix least
greatest := least;
end // foreach
end // fix greatest

N. Piterman

109

Lecture 4: Bypassing Determinization N. Piterman

Proof (Generalized Biichi—-Soundness)

Generalized Blichi:
* Suppose that greatest is not empty. For the fixpoint to 1. fix (greatest := V)

terminate, for each G; the inner fixpoint starting from 2. foreach (G;)

.] 3 fix (least := G; A cpre(greatest)
this Valu.e recomputesllt 4 least := least V cpre(least);
* Let leasty, least], least;, ... be the sequence of values 5 end // fix least
that least has through the computation of this last 5. greatest:=least,
)) 7 end // foreach
iteration for G;. 8. end // fix greatest

* Consider v € greatest. Let j, be the index such that
v E least]l:o.
By definition of cpre(-), PO can force a successor w of v. But then, w € leas’c]‘:1 for
some j; < j,. This shows that PO can ensure to reach least, = G, A cpre(greatest).
So it ensures a visit G;.

* But now least}, = G; A cpre(greatest).

So next 0 forces least}'!, for some k and repeat this process.

* By induction, 0 can enforce A; [J< G;.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 110

Lecture 4: Bypassing Determinization N. Piterman

Proof (Control of Biichi - completeness)

If there is a strategy f s.t. every play
compliant with it wins A; (I G;.
Every node v from which f is winning

remains in every approximation of the fixpoint greatest:
Consider some ;. From v there is a maximum on the length of
paths to reach G; A cpre(greatest) (Konig’s lemma).

Prove by induction on the number of iterations in the first
fixpoint that win< greatest. Generalized Biichi:

For greatest, = V this is clear. Assur 1. fix(greatest:=V)

every node v € win it must be that v 2 foreach (()

reach G; A cpre(win).

3. fix (least := G; A cpre(greatest)
4. least := least V cpre(least);
5. end // fix least

6. greatest := least;

7. end // foreach

8. end // fix greatest

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 111

Lecture 4: Bypassing Determinization

0,0, 1,0
0.0,0,1 C
0.0,0,0
0.1,1,0
1
0.1,0, 1 -
0.1,0,0

1.0.0,1

1.0,0,0

7.0,1,0

T.1,0, 1

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

1,1,1,0

1,1,0,0

N. Piterman

112

Lecture 4: Bypassing Determinization N. Piterman

Oops ...

* The clients do not release the bus!

* It's not only the system that has to do good things.
* The environment has to do good things as well!

» We need:(A; OOA4;) » (A OOG)

* We call this Generalized Reactivity (1) or GR(1).

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 113

Lecture 4: Bypassing Determinization N. Piterman

Solving GR(1) Games

Generalized Reactivity (1):
1. fix (greatestZ := V)
2. foreach (G;)
fix (leastY := G; A cpre(greatestZ))
leastY := leastY V cpre(leastY);
foreach (4;)
fix (greatestX := 1)
greatestX := least V (—A; A cpre(greatestX))
end // fix greatestX
leastY := leastY V greatestX;
10. end // foreach A
11. end // fix leastY
12. greatestZ :=leasty;
13. end// foreach G
14. end // fix greatestZ

O oo NOUL AW

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 114

Lecture 4: Bypassi N. Piterman

Proof (Control of GR(1) —-Soundness)

Suppose that greatestZ is not empty. For each G; the inner
fixpoint starting from greatestZ recomputes greatestZ.

Let leastY}, IeastYli, IeastYé, .. be the sequence of values that leastY
has during the last iteration. Each leastY}, is equal to the union of

greatestX}c’l, greatestXf,'{’z, ey greatestXﬁc’m.
Consider v € greatestZ. Let k, be the minimal index such that

v E IeastY}!‘;0 and let j, be the minimal such that v € greatestxg 2.
By definition of cpre, PO can control to reach in one move
greatestxﬁc’{ ' such that either (A) k; < ky or (B) k; = kg and j; = J,.
In case (B), we know that v = —4; . So by playing this strategy, ’0

can ensure that either some A4 is visited finitely often, or reach

leastY} A cpre(greatestZ). “esenicy
By repeating the same for all G; PO can enforce

(AOo4)) = (hpO 6

leastY :=leastY V cpre(leastY);
foreac h (4))
fix (greatestX := V)
greatestX :=least V (—4; A cpre(greatestX))
end // fix greatestX
leastY := leastY V greatestX;
10. end // foreac hA
11. end // fix leastY
12. greatestZ :=leastY;
13. end // foreac hG

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 14. end//fix greatestz 115

Nowukwne

©o ®

Lecture 4: Bypassing Determinization N. Piterman

Proof (Control of GR(1) — completeness sketch)

If there is a strategy f s.t. every play compliant with it wins

(/\j <>Aj) - (A OOG;)
Every v from which f is winning remains in every
approximation of the fixpoint greatestZ:
As before, consider some G;. From v there is a maximum on the
number of visits to A; before arriving to G; A cpre(win) (Konig's
lemma).
Prove by induction on the number of iterations in the first
fixpoint that win € greatestZ.
For greatestZ, = V this is clear. Assume win E greatestZ;. Then

for every v € win it must be that v € leastY}, for some k.

1 fix (greatestZ := V)

2 foreach (G;)

3 fix (leastY := G; A cpre(greatestz))
4, leastY :=leastY V cpre(leastY);
5. foreach (4;)

6 fix (greatestX := V)

7 greatestX :=least V (—4; A cpre(greatestX))
8. end // fix greatestX

9. leastY := leastY V greatestX;
10. end // foreach A

11. end // fix leastY

12. greatestZ :=leastY;

13. end // foreach G

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 14. end//fix greatestz 116

Lecture 4: Bypassing Determinization N. Piterman

Memorizing Intermediate Values

Generalized Reactivity (1):
1. fix (greatestZ :=V)
2. foreach (G;)

3. cY:=0;

4, fix (leastY := G; A cpre(greatestZ))
5. leastY := leastY V cpre(leastY);
6. foreach (4;)

7. fix (greatestX :=V)

8. greatestX := least V (—A; A cpre(greatestX))
9, end // fix greatestX

10. x[G;][cY][4}] := greatestX;
11. leastY := leastY V greatestX;
12. end // foreach A

13. v[G;][cY] := leasty;

14. cY:=cY + 1;

15. end // fix leastY

16. greatestZ :=leasty;

17. end// foreach G
18. end // fix greatestZ

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 119

Lecture 4: Bypassing Determinization

Construct the Realizing Machine

(Qe A Pe N (/\j <>Aj)) - (95 A Ps N\ (Ai <>Gi))
 Embed 6., p,, 0., and p. into G = (V,V,, V4, E, @), where
@ = (A OO4;) = (A OOG)
* Setlet m = |{G;}| and n = |{A4;}].
* Construct a machine M realizing ¢:
M = (27,29,2790 x [1..m] U {sy}, p, S, L):

L (6 iEG,
p(SO;l)_{T i|=—|96
((i",0,1D 1) (i,0) E G, A(i',0") € win

(@0, (,0) €y[G]lcY]A G, 0') € y[Gi][< cY]
o (i,0) E =4; A (i, 0) € X[G][cY][4;] A
(000 (i',0") € YIGI < cYI[< 4;]

p((i, 0, l),i’) = <

\

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

N. Piterman

120

Lecture 4: Bypassing Determinization N. Piterman

Optimizing Symbolic Runtime

Generalized Reactivity (1):
1. fix (greatestZ :=V)
2. foreach (G;)

3. cY:=0;

4, fix (leastY := G; A cpre(greatestZ))

5. leastY := leastY V cpre(leastY);

6. foreach (4;)

7. fix (greatestX :=y[G;][maxprev])
8. greatestX := least V (—A; A cpre(greatestX))
9, end // fix greatestX

10. x[G;][cY][4}] := greatestX;

11. leastY := leastY V greatestX;

12. end // foreach A

13. v[G;][cY] := leasty;

14. cY:=cY + 1;

15. end // fix leastY

16. greatestZ :=leasty;

17. end// foreach G
18. end // fix greatestZ

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 121

Lecture 4: Bypassing Determinization

Back to the Arbiter
Environment: System:
* Initially: * Initially:
—|7‘1 /_IT'Z _lgl /_Igz

 Transition:
((r1A =g1) = Or) A
((—IT1 ANg1) = O _'7”1) A
((r2A =g2) = Or2) A

(=12 A g2) O —2)
* Good things:

O (A Vg AOO (A1, V 1gs)

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

e Transition:
(191 V —g2) A
((91 ©Q0r) = (g “’Ogﬂ) A

((g2=0m2) = (92 ©092))
* Good things:

O g =) AOO (g2 =172)

N. Piterman

122

Lecture 4: Bypassing Determinization N. Piterman

Result of Synthesis

] I
(1,:0,1,:0,8,:0,8,:0 H 11:0,1,:0,8,:0,8,:0)—)[r,:0,15:1,8,:0,g,:0 H r:0,1,:1,€,:0,8,:1 H 1r1:0,1,:0,g,:0,8,:1 J

(r:1,1,:0,8,:0,8,:0 r:1,1,:1,8,:0,8,:0 J (r:1,1,:1,8,:0,8,:0 H r:1,1,:1,8,:0,8,:1 H r1:1,1,:0,8,:0,8,:1 J
|

1

(r;:1,1,:0,8,:1,8,:0 ri:1,ry:1,8::1,,:0 J

L1

{ r1:0,1,:0,g,:1,8,:0

r:0,r,:1,g,:1,8,:0

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 123

Lecture 4: Bypassing Determinization

But why do you embed safety?

 We started from:

<>Aj)) - (95 A

(6 A Ope A (A

* And ended up with:
("
J

<>Aj) - (A;

Ps A (/\i

O Gh)

O Gy))

with some modifications to permitted moves in 2797,

e Are the two the same?
e No!
 What's the difference?

— Realizability in our game implies realizability of the general

formula.

— Other direction is not true.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

N. Piterman

124

Lecture 4: Bypassing Determinization

Lecture 4: Bypassing Determinization

AMBA Bus

+ Industrial standard
« ARM’s AMBA AHB bus
— High performance on-chip bus
— Data, address, and control signals
— Up to 16 masters and 16 clients
— Arbiter part of bus (determines control signals)

Client 15

Master 15 Client 0 Client 1

=8 ib 4t

Arbiter

AMBA AHB

&cﬁv& Synthesis, MOVEF Summer School, Aalbora 2022

From BGJPPWO7

—
N. Piterman]

130

Some applications

Lecture 4: Bypassing Determinization

Generalized Buffer

+ Tutorial model checking design from IBM.

« Parameterized buffer.
— Transfer data from n senders to 2 receivers.
— Senders arbitrary order.

— Receivers round robin.
GenBuf

Controller

BioR.REQ(Y !
RtoB_ACK(() 1
h

BloR REQ(Y [
|| RteB-ACKY)4
|

'
'

o |
Receiverl
'

' StwBREQ({)
(SeBREQE L

p i BroS ACK(])

| Sender3 Sis.aze] T

DO(0.31)

T

&achve Synthesis, MOVEF Summer School, Aalbcra 2022

N. Piterman]|

Lecture 4: Bypassing Determinization N. Piterman]
Valet Parking Without a Valet
David C. Conner,, Hadas Kress-Gazit,, Howie Choset,, Alfied A, and George J. Pappas,
Where's Waldo?
Sensor-Based Temporal Logic Motion Planning
Hadas Kress-Gazit, Georgios E. Fainekos and George 1. Pappas
|
| / - ".,z&;_ :;f
i 4
L1 j 7
x g 1]
active Synthesis, MOVEP Summer School, Aalborg, 2022 Pi

IEEE International Conference on Robotics and Automation (ICRA)
Iterator-Based Temporal Logic Task Planning
Sebastian A. Zudaire; Martin Garrett; Sebastian Uchitel

8 Visited Loc. / 2% UBA
BB Discrete Loc. : Universidad de Buenos Aires

& Nemo Found Argentina virtus robur et studium|

141
==

IEeactive Synthesis, MOVEP Summer Schuus, Suwvuiy 2UZ2

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

N. Piterman

93

Lecture 4: Bypassing Determinization N. Piterman

Valet Parking Without a Valet

David C. Conner;, Hadas Kress-Gazit;, Howie Choset:, Alfred A. Rizzi;, and George J. Pappas;:

Where’s Waldo?
Sensor-Based Temporal Logic Motion Planning

Hadas Kress-Gazit, Georgios E. Fainekos and George J. Pappas

gl -:-rw-.-'-ﬂw-.-!-:__ . 5

-
_ Ed
i,

T

1
(
i

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 142

../Movies/sim_multi_run_5_320X360_world.avi
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movies/sim_multi_run_5_320X360_world.avi

Lecture 4: Bypassing Determinization N. Piterman

Automatic Synthesis of Robust Embedded Control Software

Tichakorn Wongpiromsarn, Ufuk Topcu and Richard M. Murray
California Institute of Technology
Pasadena, California 91125

B ", &k Rr;l—[

vehicle & environment states

route

vehicle & environment states

path planning problem

pm?
wehicle state

actuation commands

Fig 1.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 | 143

file://localhost/Users/np183/Verif/prof/fsim/synthesis/presentation/Movies/sim4.avi
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movies/sim4.avi

Lecture 4: Bypassing Determinization N. Piterman

Robotics Approach Overview

o FSM
Specification
. Realizable T)
Synthesls % carrying_item .
Unrealizable i e’ PN
\4
Specification Analysis
Hybrid Controller
Simulation
— Physical Robot

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 144

Robotics . . :
Research The International Symposium of Robotics Research

L ISRR 2019: Robotics Research pp 509-525

4 Alank:

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/ISRR19_0049_VD_fi.mp4

IEEE
Robotics &
Automation

1 Society

IEEE Robotics and Automation Letters
David Gundana & ; Hadas Kress-Gazit ®

Event-Based Signal Temporal Logic Synthesis for Single and Multi-Robot Tasks

(F[O 25](” X1t — Xestmr, 10t |I< 1) N\
Viost = G | lead = ’ ’ 2
host (o ((” X1t — Xcst’mr,l,t ||< 1)U[25?60](“ X1t — [1751 _1] ||< 1)

< 1 ” X3.t — Xestmr, k.t ||< 1))
v _G t, = F (|| 2.6 = Xestmret | estmr.k,
requesty, (?“BQ’UEBS k [0,20] (((” X4t — Xestmr ket |I< 1 ” X5t — Xestmr, kot |I< 1))

WV eollision = G[O,oo}(” Xit — Xjt ||> 005) .,\V/?, 7£ J

q]wall}lvoz‘di — G[O,oo] (mm(” X?'.?t — M ”) > 01) ,?: —

2 UN Ay
malarm Vmy, [010] m,, [0.10) %% ﬁl 'Fﬂ
o 4
v =<
.E} ==} e
== S
2 <

Y .
Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 2D S

file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/RALEvBasedSTL.mp4
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/RAL2022EvSTL_Short.mp4
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/PhysVideo.mp4

<
o
o
c
.

d Automat

ic Task Planning

Sebasti

ICS an

IEEE International Conference on Robot
Iterator-Based Temporal Log
Sebastian A. Zudaire; Martin Garrett;

Uchitel

an

’

’

Explicit Location Controller

8 4

N
) Position readings

= 4\6

3 °
Bt t ey \
g g m
B[
3
I Y <8
5 mwm .m..m
[=}
5 7 sSa
@MOM ® m
Muv g 2
§ §
G0 O %
o By I @
- 18 19
B 2% 8

.
.

Fire Sensor
Control input

Sensors

Hybrid Layer

Synthesis

Discretization
N [Feedback Controllers

y 4

L

Task Specification
D

- 2n3 ©o
S

H AR

€ €

[7) o

z o @s
2
- -
3

@ . . g

e = H 1

BE R €} gl) B8 s

LI 4 Elle $. g

= K = A
— H

x@ s P I\ <

H = @ M.Al' TN

: 5 L 1\

<

Q o, 121220 < &

3 s||Ele|sE: 4

e 3 1° || 5|8 & °

3) o ¥ .

NS 3 o)

H =1 £ — @
g = o < 5
A — $ 3 g

\ | — [¢ s
0! Hetg—=rani|| |2
! 8 - x ~ k1 e

H N 8 o 1M 3 &

5\ /5 / S= @ s

2 s/ 5 < .m [
' = - -
v/ T © — 2
! % [a | = K]
% S 2 3>
=il |5 £
g s\els |4 g

k=l > 178 le 8 (5]

] IS <

. ol =B =

03 ~ 18] (5 218 @

= ald| S o =~| S | =

o © Sl2ls M gla |2 Q
g ! 2ls °

- e B ~ = 3

Sc |58 @ AL [}

[T SIS = — = == [}

=0 sE 8 w

?....‘.'f..................n..x-..‘.-.

LR S R S

[S

L

O S O S S

¥ A

Y R T S

DTN
e
.

.

.
.
.

D R)

LR LA AR AR R LA E L EE & T RAREE A]

O S P P

RN

SRR L g

o

410
P

Ires
bur et studium

dad de Buenos A

s

i VIrtus ro

UBA
versi

 Un

ﬂ /' Argent

L

¥ Visited Loc.
AdIDOIY,

BB Discrete Loc. §
@@ Nemo Found

MOVEP Summer Schoos,

ive Synthesis,

React

Lecture 4: Bypassing Determinization N. Piterman

MovementModel = (go[Rooms][Locations] -> GoModel),
GoModel = (arrived[Rooms][Locations] -> MovementModel).

Adjacency = InRooml, //Start in room @

InRooml = (go[1][Locations] -> InRooml | go[2][Locations] -> InRoom2), //From Rooml we can go to Rooml or Room2
InRoom2 = (go[2][Locations] -> InRoom2 | go[3][Locations] -> InRoom3), //From Room2 we can go to Room2 or Room3
InRoom3 = (go[3][Locations] -> InRoom3 | go[1][Locations] -> InRooml). //From Room3 we can go to Room3 or Rooml

Room(Id=1) = Elem[8],
Elem[i:Locations] = (when (i<M) go[Id][i+1] -> arrived[Id][i+1] -> Elem[i+1] |
when (i»>@) go[Id][i-1] -> arrived[Id][i-1] -> Elem[i-1]).

PersonSensor = (sense -> Sensing),
Sensing = ({yes.person,no.person} —-> PersonSensor).

1t1l_property SenseAtEachLoc = [](arrived[Rooms][Locations] -> (!go[Rooms][Locations] W {yes.person,no.person}))

luent WentLocRoom[j:1..N]J[i:@..M] = <arrived[j][i],yes.person>
luent FoundPerson = <yes.person,Alphabet\{yes.person}>

assert VisitedRooml = ((WentLocRoom[1][8] && WentLocRoom[1][1] && WentLocRoom[1][2]) || FoundPerson)
assert VisitedRoom2 = ((WentLocRoom[2][0] && WentLocRoom[2][1] && WentLocRoom[2][2]) || FoundPerson)
assert VisitedRoom3 = ((WentLocRoom[3][8] && WentLocRoom[3][1] && wentLocRoom[3][2]) || FoundPerson)

controllerSpec ControlSpec
safety = {
assumption = {}
liveness = {VisitedRooml,VisitedRoom2}// ,VisitedRoom3}
controllable = {Controllables}

1
i

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 149

Lecture 4: Bypassing Determinization N. Piterman

Bibliography

—

Safraless Decision Procedures (O. Kupferman and M.Y. Vardi), FOCS 2005, 531-542.
2. Bounded Synthesis (B. Finkbeiner and S. Schewe), STTT, Vol. 15, No. 5-6, pp. 519-
539, 2013.

Unbeast: Symbolic Bounded Synthesis (R. Ehlers), TACAS 2011, 272-275.

Synthesis of Reactive(1) Designs (R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli,
and Y. Sa'ar), Journal of Computer and System Sciences, Vol. 78, No. 3, 911-938, 2012.

5. Valet Parking Without a Valet (D.C. Conner, H. Kress-Gazit, H. Choset, A. Rizzi,
and G.J. Pappas), Conference on Intelligent Robots and Systems 2007, 572-577.

S

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 94

Lecture 4: Bypassing Determinization N. Piterman

Lectures Outline

* Introduction

* Automata and Linear Temporal Logic
* Games and Synthesis

* General LTL Synthesis

* Bypassing Determinization

* Current Research Directions

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 95

Lecture5.pptx

Lecture 5: Current Research Directions N. Piterman

Tecture 5 Cirrent Research Disections N. Frtermar] Leciure 5: Citrrent Research Directions N Pitermar] Tecture 5 Cirrent Research Disections N. Frtermar]
Distributed Synthesis Safety of Learned Behaviour Strategic Reasoning
» We want to co-synthesize controllers that will control different variables and + Use formal specifications at learning and at runtime: » Using games and reasoning about strategies for designing multi-agent systems.
collaborate. — Shield synthesis — create controllers that accompany a learner and restrict attention * Connections to algorithmic game theory.
* An architecture A = (P,e,V, 1, 0), where: to safe actions. * Logics, games, equilibria, ...
— P is a set of processes.
— e € P the environment.
— V set of (Boolean) variables.
- I:P - 2V input connectivity function.
- 0:P - 2" output connectivity function.
Vpup2. 0(p) NO(p;) = 0
V =Upep O(p)
+ (
* An implementation for p € P is (2!®)) — 290,
+ tional Conference an Tosls and Algorthms for the Consinctian and Analyisof Systems
As before, we would like to replace (2/”)) " by some (finite) domain D,,. [——— mww”w s | Clene
« Given implementations {7}, },,cp for all processes, their composition ||, T, includes all . Shield Synthesis:
possible matching interactions. yaems
Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 2]) 155 Synthesis, MOVEF Summer School, Aalborg, 2022 153
Lecture 5: Current Research Directions. N. Piterman Lecture 5: Current Research Directions N. Piterman| Lecture 5: Current Research Directions. N. Piterman
Abstracting Real Time Unrealizability Is Implication the Right Thing?
* Discrete controllers are augmented with continuous controllers. * What feedback do you give when the specification is unrealizable? + We've seen that
* The discrete model does not capture time it takes to cross a transition. — Environment counter strategy: (8o A Ope A (A O A)) — (85 A Ops A (A OO G)
+ How to combine? *Build a strategy for the environment and let the user play against it. is handled by restricting permitted moves and solving
2 Unreallzabl‘hty core: . o . (I\JDOA,') - (AO06)
* Compute d.n‘nmmd] set of Stmmnh)v\ that is still unredhza.ble. Example. Let x and y be Boolean input and output variables.
— Suggest additional assumptions that make guarantees possible. Consider the specification:
(00 ADGG < 1) - @O < Oy) ATO-Y)
It is clearly realizable (just set y to false ...).
But
((D((EIOX) - (Ox HOJ’J))
AQOx (AT x = y) ~00-)))
is not.
JOVEF Summer School, Aalborg, 2022 lﬂ ﬁ JOVEF Summer School, Aalborg, 2022 liﬂ
Lecture 5: Current Research Directions. N. Piterman
Asynchronous (fully observable) Composition
* So far system and environment were strictly synchronous.
* This caused some problems with hybrid control that we tried to circumvent.
+ How to allow both system and environment multiple (unbounded) number of
actions without either flooding?
— Add a “who’s in control” mechanism.
— Add an additional clause to specification forcing the system to give back control.
— Games become more complicated.
— “Modelling benefit” justifies?
Reactive Synthesis, MOVEF Summer School, Aalborg, 2022 179

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 154

Lecture 5: Current Research Directions N. Piterman

Distributed Synthesis

* We want to co-synthesize controllers that will control different variables and
collaborate.
* An architecture A = (P,e,V,1,0), where:
— P is a set of processes.
— e € P the environment.
— V set of (Boolean) variables.
— [: P - 2"V input connectivity function.
— 0: P - 2V output connectivity function.
Vp1,p2.-0(p1) N 0(py) = @
V =Upep O(p)
» An implementation for p € P is (2! (p))+ — 200,
As before, we would like to replace (2! (p))+ by some (finite) domain D,,.

* Given implementations {T), },cp for all processes, their composition |, T, includes all
possible matching interactions.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 182

Lecture 5: Current Research Directions N. Piterman

The Synthesis Problem

* Given an architecture A = (P,e,V, 1, 0) and a specification ¢ over V, do there exists
implementations {7}, },,cp such that ||, T}, satisfies ¢?

* In general the problem is undecidable.
— It is enough to have an architecture with two processes with separate inputs.

0.
e

— If the architecture contains an information fork, synthesis for it is undecidable.
* Some architectures are possible:

But complexity is non-elementary.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 183

Lecture 5: Current Research Directions N. Piterman

What are my options?

* Bounded synthesis:
— Use the bounded synthesis for each process separately.
— Synthesize all the processes together.
* Construct dominant strategies inductively:
— For a process construct a dominant strategy for the full specification.
— Extract from the dominant strategy the assumptions for other processes.
— Synthesize a dominant strategy for specification and new assumptions for all
others.
* Use Zielonka/Asynchronous Automata.
— Communication by synchronous message passing (blocking multicast).
— More architectures are decidable.
— Sending of Full information leads to algorithmic distribution.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 184

Lecture 5: Current Research Directions N. Piterman

Safety of Learned Behaviour

* Use formal specifications at learning and at runtime:
— Shield synthesis — create controllers that accompany a learner and restrict attention
to safe actions.

observation

Learning
Agent

reward
Environment
*—A‘

observation

gsafe actions

actions

+ Learning

Agent

§
[Erwironment reward

1 safe action safe action

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

L> TACAS 2015: Tools and Algorithms for the Construction and Analysis of Systems pp 533-548 | Cite as

Shield Synthesis:

Runtime Enforcement for Reactive Systems
Roderick Bloem, Bettina Kénighofer, Robert Kénighofer & Chao Wang

185

International Symposium on Leveraging Applications of Formal Methods

Shield Synthesis for Reinforcement Learning

L> ISoLA 2020: Leveraging Applications of Formal Methods, Verification and Validation: Verification Principles pp 290-306 | Cite as

Bettina Ké&nighofer B Elorian Lorber, Nils Jansen & Roderick Bloem g I__ I
ap |8 I

5

2 l ‘ r - l l

o)

ER i i

g _ i |

2 a0t L b 1 et | m mm 1 |

swana s Progmpive Shichlng
LI'F 50 100 150
Episodes L - s Em -I
Unshielded Shielded
T ALt "\, A -}I'. ’_"u j'u
- _,|"‘ "'H\r’_qx_v__?_ " ".l_*'r \, "~__' ' L-}/ .".'. I-'-,.-’L -

SCORE: SCORE: 175 v scre i Skt

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

186

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

L TACAS 2020: Tools and Algorithms for the Construction and Analysis of Systems pp 306-323 | Cite as

Good-for-MDPs Automata for Probabilistic Analysis and

Reinforcement Learning

Ernst Moritz Hahn & Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi & Dominik Wojtczak

Mean reward

1 — sLDBA
—— Siim

= Forgiving-GFM

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

0 200000

Lecture 5: Current Research Directions N. Piterman

Strategic Reasoning

 Using games and reasoning about strategies for designing multi-agent systems.
* Connections to algorithmic game theory.
* Logics, games, equilibria, ...

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 188

Lecture 5: Current Research Directions N. Piterman

Concurrent Game Structures

* A concurrent game structure ¢ = (AP, Ag, Ac,St, A, T,5¢):
— AP — atomic set of propositions.
— Ag — set of agents.
— Ac — set of actions.
— St — set of states.
— 2: St - 247 - labeling function.
— 7: St X Ac49 — St — transition function.
 History / track: p € St”.
* Strategy: f:St™ - Ac.

- Strategy profile: { fag}age,qg’
* A strategy profile defines exactly one infinite run.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 189

Lecture 5: Current Research Directions N. Piterman

Logics and Equilibria

* Alternating Temporal Logic — quantify existentially and universally about abilities of

coalitions.
(X)) OP
» Strategy logic — quantify existentially and universally about individual strategies.
Ix1, X, VX3, x4, OP (x4, X3, X3, X4)
321, X, V3, %4 O P (xq, x2) AOQ7 (1, x4) AOIQ (2, X3)

* Nash equilibrium — a strategy profile such that if a player deviates, other players can
join forces to punish them.

* Subgame perfect equilibrium — a strategy profile that is optimal from every location
in the game.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 190

Lecture 5: Current Research Directions N. Piterman

Rationality

* What does it mean for an agent to be rational?
* Nash equilibrium in Boolean context?

* Rational synthesis ...

* Dominant strategies ...

* Good-enough synthesis ...

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 191

Lecture 5: Current Research Directions N. Piterman

Related Work / Open Problems

* Other determinization [Kretinsky, Esparza, ...].

* History Determinization (GFG) [HP06, Boker, Lehtinen, ...]

* Partial information [Chatterjee, Doyen, Raskin, ...].

* Stochastic elements [Chatterjee, Kucera, ...].

* Real time [Alur, Maler, Larsen, ...].

* Quantitative Objectives [Henzinger, Kupferman, Raskin, ...].

* Distributed Synthesis [Muschol, Finkbeiner, Raskin, Walukiewicz, ...].

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 155

Lecture 5: Current Research Directions N. Piterman

Summary

* Theoretical solution well known since 1969/1989.

» Still provides motivation for a lot of theoretical and practical work.
* In theory, theory and practice are the same.

* Thank you.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 156

	Lecture1
	Lecture2
	Lecture3
	Lecture4
	Lecture5

