

Reactive Synthesis

Nir Piterman University of Gothenburg Aalborg, June 13, 2022

GOTHENBURG

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

erc

European Research Council Established by the European Commission

Programming

public static int function (int n) {
 // PRE:
 // POST:
 int k;
 if (n==1) {k=1;} else {k=n+ function (n-1);}
 return k;
}

A function defines a relation between inputs and outputs.

Doesn't quite work ...

Computation vs. Reactivity

Computational Programs: Run in order to produce a final result on termination.

Can be modeled as a black box.

Specified in terms of Input/Output relations. Reactive Programs

Programs whose role is to maintain an ongoing interaction with their environments.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

Reactive Systems

- Systems whose main aim is to interact rather than compute (OS, driver, CPU, car controller).
- Main complexity is in maintaining communication with a user / another program / the environment.
- Reactive systems are notoriously hard to design.
- Major efforts are invested in development and validation of reactive systems.

The Requirement Language

- Correctness of computational programs is expressed as Hoare triples. $\{P\}C\{Q\}$
- Correctness of reactive programs is expressed as behavioral specifications:
 - The behavior of a system is a sequence of system states.
 - Specification should tell us when a sequence is good/bad.
 - We use **temporal logic**: connect states through time.

Validating Reactive Systems

- Simulations:
 - Run the system and check whether behavior satisfies specifications.
- Model checking:
 - Create a comprehensive model of the system and check whether all behaviors satisfy specifications.
- Model checking research:
 - Automatic construction of models.
 - Predicate extraction.
 - Heap analysis.
 - Counter-example guided abstraction refinement.
 - Techniques for model exploration.
 - Efficient enumerative graph exploration.
 - Symbolic representation of states.
 - Bounded model checking and SAT/SMT solving.
 - Specification.
 - Expressive specification languages.
 - Translation to model exploration.

Synthesis

- Developing systems is hard, expensive, and error prone.
- The common solution is extensive testing and verification.
- If we can verify, why not go directly from specification to correct-by-construction systems by synthesis?
- Church's synthesis problem:
- Given a circuit interface specification and a behavioral specification:
- Determine if there is an automaton that realizes the specification.
- If the specification is realizable, construct an implementing automaton.
- Circuit interface partition to inputs and outputs.
- Behavioral specification description in first order logic.

Lecture 1: Introduction and Background

N. Piterman

Synthesis from Temporal Specifications

$$i \rightarrow \circ_{1} \rightarrow \circ_{2}$$

$$\forall t. \neg o_{1}(t) \lor \neg o_{2}(t)$$

$$\forall t. i(t) \rightarrow (\exists t' > t. o_{1}(t) \lor o_{2}(t))$$

$$\forall t. o_{1}(t) \rightarrow (\exists t' < t. (i(t') \land \forall t' < t'' < t. (\neg o_{1}(t'') \land \neg o_{2}(t''))))$$

$$\forall t. o_{2}(t) \rightarrow (\exists t' < t. (i(t') \land \forall t' < t'' < t. (\neg o_{1}(t'') \land \neg o_{2}(t''))))$$

$$\forall t. o_{1}(t) \rightarrow (\forall t' > t. (\neg (o_{1}(t') \lor \exists t < t'' < t'. o_{2}(t''))))$$

$$\forall t. o_{1}(t) \rightarrow (\forall t' > t. (\neg (o_{2}(t') \lor \exists t < t'' < t'. o_{1}(t''))))$$

- Is it possible to realize this specification?
- The formula defines a relation between i: $\mathbb{N} \to \{0,1\}$ and $o_1, o_2: \mathbb{N} \to \{0,1\}$
- We want a function that is a subset.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

Causal

 $o(0) \leftrightarrow (\exists t.\, i(t))$

- The relation $R = \{(i, o) | i : \mathbb{N} \to \{0, 1\}, o : \mathbb{N} \to \{0, 1\}, o(0) \leftrightarrow (\exists t. i(t))\}$ is not empty.
- Find a function that implements it.
- The function cannot be clairvoyant.
- It needs to be causal: $o(n) = f(i |_{\{0,...,n\}})$

Adversarial

 $\begin{array}{l} \forall t. i(t) \rightarrow \neg o(t) \\ \forall t. i(t) \rightarrow \exists t' > t. o(t') \end{array}$

- There are some input sequences for which this is possible.
- But not all!
- We want a function that can answer all input sequences.

 $f: \{ i: \{0, \dots, n\} \to \{0, 1\} \mid n \in \mathbb{N} \} \to \{0, 1\}$

• Furthermore, for every $i: \mathbb{N} \to \{0,1\}$ the unique $o: \mathbb{N} \to \{0,1\}$ such that $o(n) = f(i |_{\{0,\dots,n\}})$ for every $n \in \mathbb{N}$ satisfies the specification.

Brief History

- Church's problem [1965].
- Rabin introduces automata on infinite trees. Effectively, generalizing Büchi's work on ω -automata to trees [1969].
- Büchi and Landweber define two-player games of infinite duration [1969].
- We now know that the two are effectively the same. These are still the techniques we use to solve the problem.

- Pnueli introduces linear temporal logic [1977].
- Emerson and Clarke and Quielle and Sifakis invent model checking [1981].
- Emerson and Clarke and Manna and Wolper ignore adversarial nature and propose reduction to satisfiability [1984].
- Pnueli and Rosner establish LTL realizability to be 2EXPTIME-complete.
 - This result established realizability and synthesis as highly intractable.

N. Piterman

In these Lectures

- Synthesis as a game.
- Simple games (safety, reachability, Büchi).
- LTL Synthesis reduced to solution of parity games.
- Bypassing determinization:
 - Safraless approach.
 - Restricting the specification langauge.
 - Usage of synthesis in robotics.
- Current research directions:
 - Distributed synthesis.
 - Safety of learned behaviour.
 - Strategic reasoning.

Lectures Outline

- Introduction
- Automata and Linear Temporal Logic
- Games and Synthesis
- General LTL Synthesis
- Bypassing Determinization
- Current Research Directions

A More Formal Context

- A specification in linear temporal logic over input and output propositions.
- A system will be an automaton with output.
- Input and output are combined to create a sequences of assignments to propositions.
- All possible infinite paths over the automaton should satisfy the specification.

Linear Temporal Logic

- A set of propositions (*Prop*) denoting the basic facts about the world. Set *Prop* is partitioned to inputs \mathcal{I} and outputs \mathcal{O} .
- Linear Temporal Logic formulae are constructed as follows:

 $\varphi ::= p \| \varphi \land \varphi \| \neg \varphi \| \bigcirc \varphi \| \bigcirc \varphi \| \varphi \mathcal{U} \varphi \| \varphi \mathcal{S} \varphi$

- Other temporal formulae are derived:

 - $-\Diamond \varphi \equiv T \mathcal{U} \varphi$ Eventually.
 - $-\Box \varphi \equiv \neg \diamondsuit \neg \varphi \qquad \text{Always.}$
 - $-\varphi \mathcal{W}\psi \equiv \varphi \mathcal{U}\psi \vee \Box \varphi$ Weak Until.

 - $\diamondsuit \varphi \equiv \mathsf{T} \mathcal{S} \varphi \qquad \text{Previously.}$
 - $-\Box \varphi \equiv \neg \diamondsuit \neg \varphi \qquad \text{Historically.}$
 - $-\varphi \mathcal{B}\psi \equiv \varphi \mathcal{S}\psi \vee \Box \varphi \text{BackTo.}$

LTL Semantics

- A model for an LTL formula is an infinite sequence $\sigma = \sigma_0, \sigma_1, \dots$ with a designated location $j \ge 0$.
- Each letter σ_i is a set of propositions true at time *i*.
- Formula φ holds over sequence σ in location $i \ge 0$, denoted $(\sigma, i) \vDash \varphi$, if:
- If φ is a proposition $(\sigma, i) \models \varphi \Leftrightarrow \varphi \in \sigma_i$
- $-\left(\sigma,i\right)\vDash\neg\varphi\Leftrightarrow\left(\sigma,i\right)\nvDash\varphi$
- $-(\sigma,i) \vDash \varphi_1 \lor \varphi_2 \iff (\sigma,i) \vDash \varphi_1 \text{or} (\sigma,i) \vDash \varphi_2$
- $-(\sigma,i) \vDash \bigcirc \varphi \Leftrightarrow (\sigma,i+1) \vDash \varphi$
- $-(\sigma,i) \models \Theta \varphi \Leftrightarrow i > 0 \text{ and } (\sigma,i-1) \models \varphi$
- $-(\sigma,i) \models \varphi_1 U \varphi_2 \iff \exists k \ge i. (\sigma,k) \models \varphi_2 \text{ and } \forall i \le j < k. (\sigma,j) \models \varphi_1$
- $-(\sigma,i) \models \varphi_1 S \varphi_2 \Leftrightarrow \exists k \leq i. (\sigma,k) \models \varphi_2 \text{ and } \forall i \geq j > k. (\sigma,j) \models \varphi_1$
- Derived:
 - $(\sigma, i) \vDash \diamondsuit \varphi \Leftrightarrow \exists k \ge i \ (\sigma, k) \vDash \varphi$
 - $(\sigma, i) \vDash \Box \varphi \Leftrightarrow \forall k \ge i. (\sigma, k) \vDash \varphi$

LTL Exercises

 $\Box p$ $\Box \diamondsuit p$ $\square(p \to \mathbf{O}(q \ \mathcal{U} \ r))$ $\square(p \to p \ \mathcal{W} \ q) \stackrel{?}{\equiv} \square(p \to (\mathsf{O} p \lor \mathsf{O} q))$ $p \stackrel{?}{=} \square(\Theta \mathsf{T} \lor p)$ $\square(p \to \diamondsuit q)$ $\Box(p \to \Theta(\neg p \ \mathcal{S} \ q))$ $\diamondsuit(\neg \Theta T \land p)$ $\square(p \to \diamondsuit q) \stackrel{?}{\equiv} \square \diamondsuit \neg (\neg q \ \mathcal{S} \ p)$ $(p \mathcal{U} (q \mathcal{U} r)) \not\equiv ((p \mathcal{U} q) \mathcal{U} r)$

Automata

- Systems with discrete states.
- Formally, $A = \langle \Sigma, Q, \delta, q_0 \rangle$, where
 - $-\Sigma$ a finite input alphabet.
 - -Q a finite set of states.
 - $-\delta$: *Q* × Σ → 2^{*Q*}- a transition function. Associates with state and an input letter a set of successor states.
 - $-q_0$ an initial state.
- An input word $w = \sigma_0, \sigma_1, \dots$ is a sequence of letters from Σ .
- A run $r = q_0, q_1, ...$ over w is a sequence of states starting from q_0 such that for every $i \ge 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
- An automaton is deterministic if for every $q \in Q$ and $\sigma \in \Sigma$ we have $|\delta(q, \sigma)| \leq 1$.

Mealy Machines

- Systems with discrete states.
- Formally, $M = \langle \Sigma, \Delta, Q, \delta, q_0, L \rangle$, where
 - $-\Sigma$ a finite input alphabet.
 - $-\Delta$ a finite output alphabet.
 - -Q a finite set of states.
 - $-\delta$: *Q* × Σ → 2^{*Q*} − a transition function. Associates with every state and an input letter a set of successor states.
 - q_0 an initial state.
 - $-L: Q \times \Sigma \rightarrow \Delta$ an output function. Associates with every transition an output letter.
- A run $r = q_0, q_1, ...$ over w is a sequence of states starting from q_0 such that for every $i \ge 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
- The computation corresponding to $\mathbf{r} = \mathbf{q}_0, \mathbf{q}_1, \dots$ over *w* is $\mathbf{c} = (\sigma_0, L(q_0, \sigma_0)), (\sigma_1, L(q_1, \sigma_1)), \dots$

Mealy Machines and LTL

- The set of computations of a machine $M = \langle \Sigma, \Delta, Q, \delta, q_0, L \rangle$ is denoted $\mathcal{L}(M)$.
- Assume $\Sigma = 2^{\mathcal{I}}$ and $\Delta = 2^{\mathcal{O}}$. So input letters are assignments to input propositions and outputs are assignments to output propositions.
- A machine *M* satisfies a formula φ , denoted $M \vDash \varphi$, if every computation in $\mathcal{L}(M)$ satisfies φ .
- Given an LTL formula φ over propositions $\mathcal{P}rop = \mathcal{J} \cup \mathcal{O}$ we say that φ is realizable if there is a Mealy machine that satisfies it.
- Our task is going to be to find such a Mealy machine or say that it does not exist.
- We will mostly be interested in deterministic machines.

Bibliography

- 1. Principles of Model Checking (C. Baier and J.-P. Katoen), MIT Press, 2008.
- 2. Model Checking (E. Clarke, O. Grumberg, and D. Peled), *MIT Press*, 1999.
- 3. Handbook of Model Checking (Eds., E. Clarke, T.A. Henzinger, H. Veith), *Springer-Verlag*.

Lectures Outline

- Introduction
- Automata and Linear Temporal Logic
- Games and Synthesis
- General LTL Synthesis
- Bypassing Determinization
- Current Research Directions

Realizability

- So, given a property φ and a partition $\mathcal{P}rop = \mathcal{J} \cup \mathcal{O}$ find a system *M* such that $M \models \varphi$.
- For every possible input, decide on an output ...
- All paths through the machine should satisfy the property.

Arbiter

Arbiter₂

- Propositions $\mathcal{P}rop = \{r_1, r_2, g_1, g_2\}$, where $\mathcal{I} = \{r_1, r_2\}$ and $\mathcal{O} = \{g_1, g_2\}$.
- Requirements:
 - $-A_1: \text{leave requests:} \Box(r_1 \land ! g_1 \rightarrow \mathsf{O}r_1) \land \Box(r_2 \land ! g_2 \rightarrow \mathsf{O}r_2)$
 - − G_1 : leave grants: $\Box(r_1 \land g_1 \rightarrow \bigcirc g_1) \land \Box(r_2 \land g_2 \rightarrow \bigcirc g_2)$
 - G_2 : mutual exclusion: $\Box(!g_1 \lor !g_2)$
 - G_3 : deliver and remove grants: □♢($g_1 \leftrightarrow r_1$) ∧ □◊($g_2 \leftrightarrow r_2$)
- Or together: $A_1 \rightarrow (G_1 \wedge G_2 \wedge G_3)$

What's the idea?

- Think about control:
 - Some things are under our control.
 - Some things are **not**.
- We want to exercise our control so that to achieve certain goals.
- In some cases the environment is hostile.
- What we want:
 - Find a strategy that will guide our actions based on our view of the world.
- This leads to viewing the world as an opponent:
 - Exercise control so that uncontrollable events do not lead to damage.
- We model this as two-player games.

Example: Nim

- Some rows of matches.
- Every player removes in turn at least one match from one row.
- The one to remove last match wins.
- Can you win?

Whose in Control?

- We use graphs with vertices for states and edges for transitions.
- Ownership is by using two types of vertices.

Arbiter

Lecture 2: Games and Synthesis

N. Piterman

Games

- wemost • Formally, a game is $G = \langle V, V_0, V_1, E, \alpha \rangle$, where
 - -V is a set of nodes.
 - $-V_0$ and V_1 form a partition of V.
 - $-E \subseteq V \times V$ is a set of edges.
- A play is $\pi = v_0, v_1, ...$
- about player of $- p_{i}ay \pi = v_{0}$ $v_{j+1} = f_{i}(v_{0} + 1)$ $f_{i}(v_{0} + 1)$ \mathcal{J}_i if for every $j \ge 0$ such that $v_i \in V_i$ we have

 $\tau \to V$ such that $(v, f_i(w \cdot v)) \in E$.

- for player 1 is weather the second se α if every play compatible with it is in α . A strategy \mathcal{L} very play compatible with it is not in α .
- ayer *i* if she has a winning strategy for all plays starting from • A node \boldsymbol{v} is won v.

Control Predecessor

• In control it is easier to walk backwards.

Control Predecessor (for P0)

- Start from an set of nodes $W \subseteq V$.
- We want to say:
 - The system can force the environment to W in one move.
- That is:
 - Nodes $v \in V_0$ for which some successor is in W.
 - Nodes $v \in V_1$ for which all successors are in W.
- Formally:

$$cpre(W) = \{ v \in V_0 \mid \exists v' \in W. (v, v') \in E \} \cup \{ v \in V_1 \mid \forall v'. (v, v') \in E \rightarrow v' \in W \}$$

Control Predecessor (for P1)

- Start from an set of nodes $W \subseteq V$.
- We want to say:
 - The environment can force the system to W in one move.
- That is:
 - Nodes $v \in V_1$ for which some successor is in W.
 - Nodes $v \in V_0$ for which all successors are in W.
- Formally:

$$cpre_1(W) = \{ v \in V_1 \mid \exists v' \in W. (v, v') \in E \} \cup \{ v \in V_0 \mid \forall v'. (v, v') \in E \rightarrow v' \in W \}$$

Lecture 2: Games and Synthesis

Let's solve some games!

Lecture 2: Games and Synthesis

N. Piterman

Lecture 2: Games and Synthesis

N. Piterman

Lecture 2: Games and Synthesis

Safety Games

- Check that P0 can enforce $\square p$.
 - fix (new := p)
 new := new ∧ *cpre*(new)
 end // fix

Lemma. The algorithm computes the set of states winning for P0 with objective $\Box p$. Proof. Later.

Reachability Games

- Check that P1 can enforce $\Diamond \neg p$.
 - fix (new := ¬p)
 new := new ∨ *cpre*₁(new)
 end // fix

Lemma. The algorithm computes the set of states winning for P1 with objective $\Diamond p$. Proof. Later.

 $Attr_i(W)$ the set of nodes from which player *i* can force reaching *W*.

Safety vs Reachability Games

• Goals $\Box p$ for P0 and $\Diamond \neg p$ for P1 are complementary.

- 1. fix (new := p)
- 2. new := new \land *cpre*(new)
- 3. end // fix

- 1. fix (new := ¬p)
- 2. new := new V *cpre*₁(new)
- 3. end // fix

Safety Games

- Check that P0 can enforce $\square p$.
 - 1. fix (new := p)
 - 2. new := new ∧ *cpre*(new)
 - 3. end // fix

Proof

fix (new := p)
 new := new ∧ *cpre*(new)

3. end // fix

• Suppose that new is not empty.

Consider $v \in$ new. Clearly, $v \in p$. But also $v \in cpre(new)$.

If $v \in V_0$, then v has a successor w such that $w \in$ new.

If $v \in V_1$, then for every successor w of v we know $w \in$ new.

- If there is a strategy s.t. every play compliant with it wins $\Box p$.
 - Let new_0 , new_1 , new_2 , ... be the series of approximations of new. We prove by induction that for every ν winning for P0, $\nu \in \text{new}_i$ for every i.

Clearly, $v \in p$ implies $v \in \text{new}_0$.

Assume every v winning for P0 is in new_i for some i. Consider $v \in V_0$ winning for P0. Then, there is w such that $(v, w) \in E$ and w winning for P0. Then, w in new_i and v in new_{i+1}. Consider $v \in V_1$ winning for P0. Then, for every w such that $(v, w) \in E$ we have w winning for P0. Then, every w such that $(v, w) \in E$ is in new_i. So v in new_{i+1}.

Büchi Games

- Check that P0 can enforce $\Box \diamondsuit p$.
 - 1. fix (greatest := V)
 - 2. fix (least := $p \land cpre$ (greatest)
 - least := least V cpre(least);
 - 4. end // fix least
 - 5. greatest := least;
 - 6. end // fix greatest

Lemma. The algorithm computes the set of nodes winning for P0 with objective $\Box \diamondsuit p$.

Büchi Games

- Check that P0 can enforce $\Box \diamondsuit p$.
 - 1. fix (greatest := V)
 - 2. fix (least := $p \land cpre$ (greatest)
 - least := least V cpre(least);
 - 4. end // fix least
 - 5. greatest := least;
 - 6. end // fix greatest

Proof (Control of Büchi –Soundness)

- 1. fix (greatest := V)
- 2. fix (least := $p \land cpre$ (greatest)
- 3. least := least V *cpre*(least);
- 4. end // fix least
- 5. greatest := least;
- 6. end // fix greatest

- Suppose that greatest is not empty. For the fixpoint to terminate, the inner fixpoint starting from this value recomputes it.
- Let least₀, least₁, least₂, ... be the sequence of values that least has through the computation of this last iteration.
- Consider $v \in \text{greatest}$. Let i_0 be the index such that $v \in \text{least}_i$. By definition of $cpre(\cdot)$, P0 can force a successor w of v. But then, $w \in \text{least}_i$ for some $i_1 < i_0$.
- This shows that P0 can ensure to reach $\text{least}_0 = p \land cpre(\text{greatest})$. So it ensures a visit p.
- But now least₀ = p ∧ cpre(greatest). So in the next step P0 forces least_j for some *j* and repeat this process.
- P0 can enforce $\Box \diamondsuit p$.

Proof (Control of Büchi - completeness)

- 1. fix (greatest := V)
- 2. fix (least := $p \land cpre$ (greatest)
- 3. least := least V *cpre*(least);
- 4. end // fix least
- 5. greatest := least;
- 6. end // fix greatest

- If there is a strategy *f* s.t. every play compliant with it wins □♢*p*.
- Every node *v* from which *f* is winning remains in every approximation of the fixpoint greatest:
 - From v there is a maximum on the length of paths to reach p (König's lemma).
 - Prove by induction on the number of iterations in the first fixpoint that win⊆ greatest.
 - For greatest₀ = V this is clear.
 - Assume win⊆ greatest_i. Then for every node $\nu \in \text{win}$ it must be that $\nu \in \text{least}_j$ for the distance to reach $p \land \text{win}$.

Strategy

- A strategy is the way of enforcing the goal.
- Let *D* be some memory domain and let d_0 be an initial memory value. Elements in the memory domain recall facts about the history of play so far.
- A strategy for player *i* is a function $f_i: V^* \cdot V_0 \to V$ such that $(v, f_i(w \cdot v)) \in E$.
- We look to replace V^* by some (finite) domain D. Then, instead of considering V we could consider $D \times V$.
- The strategy is replaced by two functions:
 - Move function: $f_i^m : D \times V_i \to V$ s.t. $(v, f(d, v)) \in E$.
 - Update function: $f_i^u : D \times V \to D$.

What about Synthesis?

- Our goal is to construct a Mealy machine that realizes the specification.
 - A Mealy machine from every state reads input and answers with output.
- A node in the game corresponding to choice of input will be followed by node corresponding to choice of output.
- We can define a specialized game with nodes in $2^{\mathcal{I}\cup\mathcal{O}}$.
- We can define the winning condition with an LTL formula over $\mathcal{I} \cup \mathcal{O}$. A play naturally corresponds to a possible model.
- For a set of nodes *W*, define

 $cpre(W) = \{ v \mid \forall x \in 2^{\mathcal{I}} . \exists y \in 2^{\mathcal{O}}. (x \cup y) \in W \}$

• When computing the set of winning states, check that for every $x \in 2^{\mathcal{I}}$ there is $y \in 2^{\mathcal{O}}$ such that $x \cup y$ is winning.

- Let *D* be some memory domain and let d_0 be an initial memory value. Elements in the memory domain recall facts about the history of play so far.
- A strategy for player *i* is a function $f_i: V^* \cdot V_0 \to V$ such that $(v, f_i(w \cdot v)) \in E$.
- We look to replace V^* by some (finite) domain D. Then, instead of considering V we could consider $D \times V$.
- The strategy is replaced by two functions:
 - Move function: $f_i^m : D \times V_i \to V$ s.t. $(v, f(d, v)) \in E$.
 - Update function: $f_i^u: D \times V \to D$.

- Let *D* be some memory domain and let d_0 be an initial memory value. Elements in the memory domain recall facts about the history of play so far.
- A strategy for player *i* is a function $f_i: (2^{\mathcal{I}\cup\mathcal{O}})^* \cdot 2^{\mathcal{I}} \to 2^{\mathcal{O}}$.
- We look to replace V^* by some (finite) domain D. Then, instead of considering V we could consider $D \times V$.
- The strategy is replaced by two functions:
 - Move function: $f_i^m : D \times V_i \to V$ s.t. $(v, f(d, v)) \in E$.
 - Update function: $f_i^u: D \times V \to D$.

- Let *D* be some memory domain and let d_0 be an initial memory value. Elements in the memory domain recall facts about the history of play so far.
- A strategy for player *i* is a function $f_i: (2^{\mathcal{I}\cup\mathcal{O}})^* \cdot 2^{\mathcal{I}} \to 2^{\mathcal{O}}$.
- We look to replace $(2^{\mathcal{I}\cup\mathcal{O}})^*$ by some (finite) domain *D*. Then, instead of considering $(2^{\mathcal{I}\cup\mathcal{O}})^*$ we could consider $D \times 2^{\mathcal{I}\cup\mathcal{O}}$.
- The strategy is replaced by two functions:
 - Move function: $f_i^m : D \times V_i \to V$ s.t. $(v, f(d, v)) \in E$.
 - Update function: $f_i^u : D \times V \to D$.

- Let *D* be some memory domain and let d_0 be an initial memory value. Elements in the memory domain recall facts about the history of play so far.
- A strategy for player *i* is a function $f_i: (2^{\mathcal{I}\cup\mathcal{O}})^* \cdot 2^{\mathcal{I}} \to 2^{\mathcal{O}}$.
- We look to replace $(2^{\mathcal{I}\cup\mathcal{O}})^*$ by some (finite) domain *D*. Then, instead of considering $(2^{\mathcal{I}\cup\mathcal{O}})^*$ we could consider $D \times 2^{\mathcal{I}\cup\mathcal{O}}$.
- The strategy becomes $f_i: D \times 2^{\mathcal{I}} \to D \times 2^{\mathcal{O}}$.

From Strategy to System

Consider a strategy $f_0: D \times 2^{\mathcal{I}} \to D \times 2^{\mathcal{O}}$ and let $d_0 \in D$ be the initial memory value. Construct the machine $M = \langle \Sigma, \Delta, D, \delta, d_0, L \rangle$ with: $\Sigma = 2^{\mathcal{I}}$ $\Delta = 2^{\mathcal{O}}$ $\delta(d, i) = f_0(d, i) \Downarrow_1$ $L(d, i) = f_0(d, i) \Downarrow_2$

What's the **memory** domain in the cases we've seen?

Winning → Realizability

Consider a run $\mathbf{r} = \mathbf{q}_0, q_1, \dots$ over $\mathbf{w} = \sigma_0, \sigma_1, \dots$ and the corresponding computation $\mathbf{c} = (\sigma_0, L(q_0, \sigma_0)), (\sigma_1, L(q_1, \sigma_1)), \dots$ of *M*.

- i. For every $i \in 2^{\mathcal{I}}$ there is $o \in 2^{\mathcal{O}}$ s.t. (i, o) is winning.
- ii. By *f* winning **c** satisfies the formula.

Realizability \rightarrow Winning

Take a machine *M* and use it to construct the winning strategy. A play in the game is a computation of the machine.

Memorize Intermediate Values

- 1. fix (greatest := V)
- 2. fix (least := $p \land cpre$ (greatest)
- 3. least := least V *cpre*(least)
- 4. end // fix least
- 5. greatest := least
- 6. end // fix greatest

- 1. fix (greatest := V)
- 2. $cY \coloneqq 0;$
- 3. fix (least := $p \land cpre$ (greatest)
- 4. y[*cY*]:= least;
- 5. least := least V *cpre*(least)
- 6. $cY \coloneqq cY + 1;$
- 7. end // fix least
- 8. greatest := least
- 9. end // fix greatest

Lecture 2: Games and Synthesis

Construct the Realizing Machine

• Given
$$G = \langle 2^{\mathcal{I}\cup\mathcal{O}} \cup (2^{\mathcal{I}\cup\mathcal{O}} \times 2^{\mathcal{I}}), 2^{\mathcal{I}\cup\mathcal{O}} \times 2^{\mathcal{I}}, 2^{\mathcal{I}\cup\mathcal{O}}, E, \Box \diamondsuit p \rangle.$$

 $E = \{((i, o), (i, o, i')), ((i, o, i'), (i', o'))\}$
• Construct a $M = \langle 2^{\mathcal{I}}, 2^{\mathcal{O}}, 2^{\mathcal{I}\cup\mathcal{O}}, \delta, s_0, L \rangle:$
 $\delta((i, o), i') = \begin{cases} \{(i', o') \mid (i', o') \text{ is winning}\} & (i, o) \in p \\ \{(i', o') \mid (i', o') \in y[\leq j]\} & (i, o) \in y[j + 1] \end{cases}$

Summary

- Starting from an LTL formula φ , construct the game $G = \langle 2^{\mathcal{I}\cup\mathcal{O}} \cup (2^{\mathcal{I}\cup\mathcal{O}} \times 2^{\mathcal{I}}), 2^{\mathcal{I}\cup\mathcal{O}} \times 2^{\mathcal{I}}, 2^{\mathcal{I}\cup\mathcal{O}}, E, \varphi \rangle.$
- Compute the set win.
- If for every $i \in 2^{\mathcal{I}}$ there is $o \in 2^{\mathcal{O}}$ such that $(i, o) \in win$ then declare φ realizable.
- Extract from the winning strategy a realizing Machine.
- But we only know to solve reachability/safety and Büchi games.
- What about general LTL?

Bibliography

- 1. Infinite Games (R. Mazala), in Automata, Logic, and Infinite-Games (Eds., E. Grädel, W. Thomas, and T. Wilke), *Springer-Verlag*, 2002.
- 2. Supervisory control of a class of discrete event processes (P. J. Ramadge and W. M. Wonham), *SIAM J. Control and Optimization*, Vol. 25, No. 1, pp. 206-230, 1987.
- 3. On the Synthesis of Discrete Controllers for Timed Systems (O. Maler, A. Pnueli, and J. Sifakis), *STACS* 1995: 229-242.
- 4. An $O(n^2)$ time algorithm for alternating Büchi games (K. Chatterjee and M. Henzinger), *SODA* 2012: 1386-1399.

Lectures Outline

- Introduction
- Automata and Linear Temporal Logic
- Games and Synthesis
- <u>General LTL Synthesis</u>
- Bypassing Determinization
- Current Research Directions
From Logic to Graphs? How to embed the logical winning condition into the graph notation?

Automata as Acceptors

- Systems with discrete states.
- Formally, $A = \langle \Sigma, Q, \delta, q_0, \alpha \rangle$, where
 - $-\Sigma$ a finite input alphabet.
 - -Q a finite set of states.
- Nondeterministic Büchi with state and Automata $-\delta: Q \times \Sigma \to 2^Q$ - a transition function. Associates with state and of successor states.
 - $-q_0$ an initial state.
 - $-\alpha \subseteq Q$ a set of accepting states.
- An input word $w = \sigma_0, \sigma_1, \dots$ is a sequence of letters from Σ .
- A run $r = q_0, q_1, \dots$ over w is a sequence of states starting from q_0 such that for every $i \geq 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
- A run is accepting if for infinitely many $i \in \mathbb{N}$ we have $q_i \in \alpha$.
- A word is accepted if some run over it is accepting.
- The language of *A*, denoted $\mathcal{L}(A)$, is the set of words accepted by *A*.

From LTL to Büchi Automata

Theorem. Given an LTL formula φ we can construct a nondeterministic Büchi automaton N_{φ} such that $\mathcal{L}(N_{\varphi}) = \mathcal{L}(\varphi)$. The size of N_{φ} is exponential in the length of φ .

Intuitively, if $sub(\varphi)$ is the set of subformulas of φ , a state of N_{φ} corresponds to a set of subformulas that are true (in an accepting run).

Control with Automaton Observer

Visit finitely many not-p's $\bigcirc \Box p$

Lecture 3: General LTL Synthesis

N. Piterman

NBW for $\bigcirc \Box p$

• NBW for $\varphi = \diamondsuit p$:

Lecture 3: General LTL Synthesis

N. Piterman

Nondeterminism is bad

What went wrong?

- The automaton is nondeterministic.
- It makes predictions regarding the future and aborts runs that do not match these predictions.
- In the context of games nondeterminism is added as choice of one side:
 - If the system resolves nondeterminism, it has to find a solution that matches all possible futures.
 - If the environment resolves nondeterminism, the system must force all runs to be accepting.

Solution: Determinism

- If the automaton were deterministic, there would be no added choice!
- We create a synchronous parallel composition of the automaton with the game.
- Solve the resulting game.
- Extract system from winning strategy.

Automata as Acceptors

- Systems with discrete states.
- Formally, $A = \langle \Sigma, Q, \delta, q_0, \alpha \rangle$, where
 - $-\Sigma$ a finite input alphabet.
 - -Q a finite set of states.
- Nondeterministic parity Automata $-\delta: Q \times \Sigma \to 2^Q$ – a transition function. Associates with state and າut letter a set of successor states.
 - $-q_0$ an initial state.
 - $-\alpha: Q \rightarrow \mathbb{N}$ a ranking of states.
- An input word $w = \sigma_0, \sigma_1, \dots$ is a sequence of letters from Σ .
- A run $r = q_0, q_1, \dots$ over w is a sequence of states starting from q_0 such that for every $i \geq 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
- A run is accepting if for the minimum rank to occur infinitely often is even.
- The language of *A*, denoted $\mathcal{L}(M)$, is the set of words accepted by *A*.

Synchronous Composition of Games

- Consider a game $G = \langle V, V_0, V_1, E, \varphi \rangle$ and a deterministic (with respect to entire alphabet Σ) automaton $A_{\varphi} = \langle \Sigma, D, \delta, d_0, \beta \rangle$.
- Their synchronous parallel composition ($G \parallel A_{\varphi}$) is the game,
 - $\hat{G} = \langle \hat{V}, \hat{V}_0, \hat{V}_1, \hat{E}, \gamma \rangle$ where:
 - $-\hat{V} = D \times V$ a new node holds a game node and an automaton state..
 - $-\hat{E} = \{(d, v), (d', v') \mid (v, v') \in E \text{ and } d' = \delta(d, L(v))\} \text{the transitions of the automaton are updated.}$
 - $-\gamma(d, v) = \beta(d)$ acceptance only considers the acceptance of the automaton.
- The results is a parity game.

Deterministic Automata Work!

Theorem. P0 wins *G* with winning condition φ iff P0 wins $G \parallel A_{\varphi}$, where A_{φ} is a deterministic automaton for φ .

- ⇒ If P0 wins *G* all she has to do in $G \parallel A_{\varphi}$ is to use the same strategy. Every play in $G \parallel A_{\varphi}$ corresponds to a play in *G* and the unique run of A_{φ} that reads this play. But the play satisfies φ , so the run must be accepting. So the play in $G \parallel A_{\varphi}$ is winning for P0 as well.
- ← If P0 wins G || A_{φ} she can use the states of A_{φ} as (part of) the memory in G. She will then be able to use the winning strategy from G || A_{φ} . Now, a play in G corresponds to an accepting run of A_{φ} . But then the play satisfies φ , which means that P0 wins.

Two tiny issues ...

How do we get a deterministic parity automata for LTL?How do we solve a parity games?

Deterministic Automata

- Well, the answer is simple: construct a nondeterministic automaton and determinize it!
- Starting from an automaton with *n* states:
- Create an automaton with $O((n!)^2)$ states and 2n rank.
- Subset construction augmented with a tree structure. Will not be shown.

Lecture 3: General LTL Synthesis

Solving parity Games

Func main()
1. Return even_parity(0, Ø);
End // Func main

Func even_parity(i, win)

- 1. fix (greatest := V)
- 2. greateast := win V ({ $v | \alpha(v) = i$ } $\land cpre(greatest)$)
- 3. if (i!=max)
- 4. greatest := odd_parity(i+1, greatest)
- 5. end // fix greatest
- 6. Return greatest;

End // Func even_parity

Func odd_parity(i, win)

- 1. fix (least := Ø)
- 2. least:= win $\vee (\{v | \alpha(v) \ge i\} \land cpre(least))$
- 3. if (i!=max)
- 4. least := even_parity(i+1, least)
- 5. end // fix least
- 6. Return least;
- End // Func odd_parity

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

Proof (Soundness)

- Suppose that win is not empty. Have the intermediate least fixpoint approximations: least_{0}^{p} , least_{1}^{p} , least_{2}^{p} , ... for an odd parity p.
- Consider $v \in \text{win.}$ Let i_1, i_3, \dots, i_m be the indices such that $v \in \text{least}_{i_j}^j$. By definition of $cpre(\cdot)$, P0 can force a successor w of v. But then, either (a) for some even j we have $v \in \alpha(j)$ and w has i'_1, i'_3, \dots, i'_m such that for j' < j we have $i'_j \leq i'_{j'}$ or (b) there is some j such that w has i'_1, i'_3, \dots, i'_m , for j' < j we have $i'_j = i'_{j'}$, and for j we have $i'_j < i'_j$.
- Consider an infinite path and what happens to these numbers. There must be an even priority that is "reset" infinitely often, showing that P0 wins.

```
Func odd_parity(i, win)

1. fix (least := \emptyset)

2. least:= win V ({v | \alpha(v) \ge i} \land cpre(least))

3. if (i!=max)

4. least := even_parity(i+1, least)

5. end // fix least

6. Return least;

End // Func odd_parity
```

```
Reactive Synthesis, MOVEP Summer School, Aalborg, 2022
```

```
Func even_parity(i, win)

1. fix (greatest := V)

2. greateast := win V ({v | \alpha(v) = i} \land cpre(greatest))

3. if (i!=max)

4. greatest := odd_parity(i+1, greatest)

5. end // fix greatest

6. Return greatest;

End // Func even_parity
```

To Summarize $|\varphi| = n$ • Start with a game structure *G* with winning condition φ .• Construct a deterministic automaton A_{φ} for φ .• Construct the product $G \parallel A_{\varphi}$.• Solve the game $G \parallel A_{\varphi}$.• Construct a winning strategy for $G \parallel A_{\varphi}$.

• Construct from the winning strategy a Mealy machine realizing φ .

The problem is **2EXPTIME-complete**.

- Determinization is an issue.
- Practical solutions of parity games.

Bibliography

- 1. Reasoning About Infinite Computations (M.Y. Vardi and P. Wolper), *Information and Computation*, Vol. 115, No. 1, pp. 1-37, 1994.
- Simple On-The-Fly Automatic Verification of Linear Temporal Logic (R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper), *Protocol Specification, Testing, and Verification* 1995: 3-18.
- 3. On the Synthesis of a Reactive Module (A. Pnueli and R. Rosner), *POPL* 1989: 179-190.
- 4. Determinization of Büchi-Automata (M. Roggenbach), in Automata, Logic, and Infinite-Games (Eds., E. Grädel, W. Thomas, and T. Wilke), *Springer-Verlag*, 2002.
- 5. On the Complexity of *ω*-Automata (S. Safra), *FOCS* 1998, 319-327.
- From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata (N. Piterman), *Logical Methods in Computer Science*, Vol. 3, No. 3, pp. e5, 2007.
- 7. Algorithms for Parity Games (H. Klauck), in Automata, Logic, and Infinite-Games (Eds., E. Grädel, W. Thomas, and T. Wilke), *Springer-Verlag*, 2002.

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

Lectures Outline

- Introduction
- Automata and Linear Temporal Logic
- Games and Synthesis
- General LTL Synthesis
- **Bypassing Determinization**
- Current Research Directions

Lecture 4: Bypassing Determinization

Two Ways to Avoid Determinization

- Replace by counting:
 - Search for bounded strategy.
 - Express winning through safety games.
 - Limited determinization through counting.
 - Translate to an SMT problem.
- Concentrate on simpler specifications:
 - Both system and environment are Büchi automata.
 - Enforce "deterministic" specification.
 - State-space exponential. Exponent linear.

The Automata Theoretic Approach to LTL Model Checking

- Given a Mealy machine $M = \langle \Sigma, \Delta, Q, \delta, q_0, L \rangle$, *M* satisfies a formula φ , denoted $M \models \varphi$, if every computation in $\mathcal{L}(M)$ satisfies φ .
- Dually, *M* satisfies a formula φ if no computation in $\mathcal{L}(M)$ satisfies $\neg \varphi$.
- Use automata for model checking:
 - Construct a nondet Büchi automaton $N_{\neg \varphi}$ such that $\mathcal{L}(N_{\varphi}) = (\Sigma \times \Delta)^{\omega} \setminus \mathcal{L}(\varphi)$.
 - Take the product of *M* and $N_{\neg \varphi}$ as a nondet Büchi automaton.
 - If $M \times N_{\neg \varphi}$ accepts some word, the word corresponds to a computation in $\mathcal{L}(M)$ not satisfying φ .
- Our goal:
 - Find a Mealy machine *M* and show that $M \times N_{\neg \varphi}$ is empty.

Nondeterministic Büchi Automata

- Systems with discrete states.
- Formally, $A = \langle \Sigma, Q, \delta, q_0, \alpha \rangle$, where
 - $-\Sigma$ a finite input alphabet.
 - -Q a finite set of states.
 - $-\delta$: *Q* × Σ → 2^{*Q*} − a transition function. Associates with state and an input letter a set of successor states.
 - $-q_0$ an initial state.
 - $-\alpha \subseteq Q$ a set of accepting states.
- An input word $w = \sigma_0, \sigma_1, \dots$ is a sequence of letters from Σ .
- A run $r = q_0, q_1, ...$ over w is a sequence of states starting from q_0 such that for every $i \ge 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
- A run is accepting if for infinitely many $i \in \mathbb{N}$ we have $q_i \in \alpha$.
- A word is accepted if some run over it is accepting.
- The language of A, denoted $\mathcal{L}(A)$, is the set of words accepted by A.

LTL Model Checking

Theorem. Given an LTL formula φ over propositions $\mathcal{J} \cup \mathcal{O}$ we can construct a nondet Büchi automaton $N_{\neg \varphi}$ over alphabet $2^{\mathcal{J} \cup \mathcal{O}}$ such that $\mathcal{L}(N_{\neg \varphi}) = (2^{\mathcal{J} \cup \mathcal{O}})^{\omega} \setminus \mathcal{L}(\varphi)$.

- We have:
 - Mealy machine $M = \langle 2^{\mathcal{I}}, 2^{\mathcal{I}}, Q, \delta, q_0, L \rangle$
 - Büchi automaton $N_{\neg \varphi} = \langle 2^{\mathcal{I} \cup \mathcal{O}}, S, \rho, s_0, \alpha \rangle$
- Construct:
 - $-M \times N_{\neg \varphi} = \langle 2^{\mathcal{I} \cup \mathcal{O}}, Q \times S, \delta', (q_0, s_0), Q \times \alpha \rangle, \text{ where} \\ \delta'((q, s), (i, o)) = \{(q', s') | \delta(s, i) = s', L(s, i) = o, \text{ and } q' \in \rho(q, (i, o))\}$
- An accepting run $r = (q_0, s_0), (q_1, s_1), ...$ on word $w = \sigma_0, \sigma_1, ...$ is exactly a computation of *M* accepted by $N_{\neg \varphi}$.
- But we are interested in the case that $M \models \varphi \dots$

Analyze the Graph

- Assume that $M \times N_{\neg \varphi} = \langle 2^{\mathcal{I} \cup \mathcal{O}}, Q \times S, \delta', (q_0, s_0), Q \times \alpha \rangle$ is empty $(M \vDash \varphi)$.
- Every run of $M \times N_{\neg \varphi}$ contains finitely many accepting states in $Q \times \alpha$.
- But how many?
 - Think about $M \times N_{\neg \varphi}$ as a graph.
 - If there are more than $|\alpha| \cdot |S|$ accepting states on a path then this is an accepting loop.
 - Create a proof that $M \times N_{\neg \varphi}$ is empty by adding a function $f: Q \times S \rightarrow \mathbb{N}$ such that:
 - $f(q_0, s_0) = |\alpha| \cdot |S|$
 - If for some (i, o) we have $(q', s') \in \delta'((q, s), (i, o))$ then:
 - If $s \in \alpha$ then f(q, s) > f(q', s').
 - If $s \notin \alpha$ then $f(q, s) \ge f(q', s')$.

Bounded Synthesis

• Remember, given φ (and $N_{\neg \varphi} = \langle 2^{\mathcal{I} \cup \mathcal{O}}, S, \rho, s_0, \alpha \rangle$) we want a machine M s.t. $M \vDash \varphi$.

- What if we search for a machine with at most *m* states?
- We can just "nondeterministically guess" its structure along with the proof that it satisfies φ .
- Create an SMT instance Γ:
 - Variables encoding transitions:
 - For $j \in \{1, ..., m\}$ and $\sigma \in 2^{\mathcal{I}}$ have $tr_{j,\sigma} \in \{1, ..., m\}$.
 - Variables encoding outputs: For $j \in \{1, ..., m\}$ and $\sigma \in 2^{\mathcal{I}}$ have $l_{j,\sigma} \in 2^{\mathcal{O}}$.
 - Variables encoding Büchi proof:

For $j \in \{1, \dots, m\}$ and $s \in S$ have $f_{j,s} \in \{0, \dots, m \cdot |S|, T\}$ (T > T and for all k, T > k).

– Add constraints:

 $\begin{array}{l} f_{0,s_0} \neq \top \\ \text{If } s' \in \rho(s,\sigma,l_{j,\sigma}) \text{ and } s \in \alpha \text{ then } f_{j,s} > f_{tr_{j,\sigma},s'}. \\ \text{If } s' \in \rho(s,\sigma,l_{j,\sigma}) \text{ and } s \notin \alpha \text{ then } f_{j,s} \geq f_{tr_{j,\sigma},s'}. \end{array}$

• If Γ is satisfiable there exists a machine of size at most *m* realizing φ and it can be extracted from the satisfying assignment.

N. Piterman

Advantages

- Simple structure of states.
 - Replace the tree structure over sets of states by a function from states to ranks.
 - Determinization is a challenge for implementation.
- Safety games compared with parity games.
 - Solution of safety games is much simpler.
 - Exact complexity and practical solving of parity games are interesting open problems.
- Search for small machines first.
 - By increasing the bound gradually we can ensure to find small implementations first (and compute less).
 - Information from failed search for small sizes can be reused for searching for larger sizes.
 - Worst case complexity is as the general technique.
- Add additional quality constraints.
 - Low number of loops ...

Take Another Look at Machines

- A machine $M = \langle \Sigma, \Delta, Q, \delta, q_0, L \rangle$, where
 - $-\Sigma = 2^{\mathcal{I}} a$ finite input alphabet.
 - $-\Delta = 2^{O} a$ finite output alphabet.
 - $-Q = 2^{\chi}$ a finite set of states.
- Express as an LTL formula over $\mathcal{J} \cup \mathcal{O} \cup \mathcal{X}$:

$$-q_0$$
:

$$\theta = \mathsf{V}_{x \in 2^{\mathcal{I}}}\left(x, L(q_0, x)\right) \wedge \delta(q_0, x)$$

 $-\delta: Q \times \Sigma \to 2^Q:$

$$\rho = \left(\wedge_{q \in Q, x \in 2^{\mathcal{I}}} \left(q \land Ox \to OL(q, x) \lor_{q \in \delta(q, \sigma)} Oq \right) \right)$$

- We may want to add some "good things" happen often enough: $\wedge_i \Box \diamondsuit (\bigvee_{q \in G_i} q)$
- Overall:

 $\theta \wedge \Box \rho \wedge \wedge_i \Box \diamondsuit (\lor_{q \in G_i} q)$

Arbiter

Lecture 4: Bypassing Determinization

Translate to LTL

- Variables:
 - $\mathcal{I} = \{r_1, r_2\}$ $\mathcal{O} = \{g_1, g_2\}$
- Initially:
 - $\neg r_1 \land \neg r_2 \land \neg g_1 \land \neg g_2$

 $((r_1 \land \neg g_1) \rightarrow \bigcirc r_1)$

• Transition:

If requesting, stay until granted Don't reuse grants

 $\begin{pmatrix} (\neg r_1 \land g_1) \rightarrow \bigcirc \neg r_1 \end{pmatrix} \qquad \qquad Don't reuse grants \\ (r_2 \land \neg g_2) \rightarrow \bigcirc r_2 \end{pmatrix} \\ ((\neg r_2 \land g_2) \rightarrow \bigcirc \neg r_2) \\ (\neg g_1 \lor \neg g_2) \qquad \qquad Mutual exclusion \\ (g_1 \leftrightarrow \bigcirc r_1) \rightarrow (g_1 \leftrightarrow \bigcirc g_1)) \qquad \qquad Don't grant w.o. request \\ Don't take away used grants \\ (g_2 \leftrightarrow \bigcirc r_2) \rightarrow (g_2 \leftrightarrow \bigcirc g_2))$ • Good things: $\Box \diamondsuit (g_1 = r_1) \land \Box \diamondsuit (g_2 = r_2)$ Lecture 4: Bypassing Determinization

Separate to Assumptions and Guarantees

Environment: • Initially: $\neg r_1 \land \neg r_2$ • Transition: $((r_1 \land \neg g_1) \rightarrow \bigcirc r_1) \land$ $((\neg r_1 \land g_1) \rightarrow \bigcirc \neg r_1) \land$ $((r_2 \land \neg g_2) \rightarrow \bigcirc r_2) \land$ $((\neg r_2 \land g_2) \rightarrow \bigcirc \neg r_2)$

- System:
- Initially:
 - $\neg g_1 \land \neg g_2$
- Transition: $(\neg g_1 \lor \neg g_2) \land$ $((g_1 \leftrightarrow \bigcirc r_1) \rightarrow (g_1 \leftrightarrow \bigcirc g_1)) \land$
- $\left((g_2 \leftrightarrow \bigcirc r_2) \rightarrow (g_2 \leftrightarrow \bigcirc g_2)\right)$
- Good things: $\Box \diamondsuit (g_1 = r_1) \land \Box \diamondsuit (g_2 = r_2)$

The Goal for Synthesis

 $(\theta_e \wedge \Box \rho_e) \to (\theta_s \wedge \Box \rho_s \wedge (\wedge_i \Box \diamondsuit G_i))$

- This still does not look very simple ...
- Can we do anything with the bits θ_e , θ_s , $\Box \rho_e$, and $\Box \rho_s$?
 - $-\theta_s$ can be used to restrict the initial moves of P0: For every initial input there is initial output satisfying θ_s ...
 - $-\Box \rho_s$ can be used to restrict the transitions of P0.
 - What if we use θ_e and $\Box \rho_e$ to restrict the moves of P1?

Lecture 4: Bypassing Determinization

Lecture 4: Bypassing Determinization

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

What's left?

$(\theta_e \land \Box \rho_e) \to (\theta_s \land \Box \rho_s \land (\land_i \Box \diamondsuit G_i))$

• This is slightly more complicated than response. We call it generalized Büchi.

Büchi:

- 1. fix (greatest := V)
- 2. fix (least := $G \land cpre$ (greatest)
- 3. least := least V *cpre*(least);
- 4. end // fix least
- 5. greatest := least;
- 6. end // fix greatest

Generalized Büchi:

- 1. fix (greatest := V)
- 2. foreach (G_i)
- 3. fix (least := $G_i \wedge cpre$ (greatest)
- 4. least := least V *cpre*(least);
- 5. end // fix least
- 6. greatest := least;
- 7. end // foreach
- 8. end // fix greatest

Proof (Generalized Büchi–Soundness)

- Suppose that greatest is not empty. For the fixpoint to terminate, for each G_i the inner fixpoint starting from this value recomputes it.
- Let least_0^i , least_1^i , least_2^i , ... be the sequence of values that least has through the computation of this last iteration for G_i .
- Consider $v \in \text{greatest}$. Let j_0 be the index such that $v \in \text{least}_{j_0}^i$.

 $v \in \text{least}_{j_0}^i$. By definition of $cpre(\cdot)$, P0 can force a successor w of v. But then, $w \in \text{least}_{j_1}^i$ for some $j_1 < j_0$. This shows that P0 can ensure to reach $\text{least}_0^i = G_0 \land cpre(\text{greatest})$.

So it ensures a visit G_i .

- But now least^{*i*}₀ = $G_i \land cpre$ (greatest). So next P0 forces least^{*i*+1}_{*k*}, for some *k* and repeat this process.
- By induction, P0 can enforce $\wedge_i \square \diamondsuit G_i$.

- 1. fix (greatest := V)
- 2. foreach (G_i)
- 3. fix (least := $G_i \wedge cpre$ (greatest)
- 4. least := least V *cpre*(least);
- 5. end // fix least
- 6. greatest := least;
- 7. end // foreach
- 8. end // fix greatest

Lecture 4: Bypassing Determinization

Proof (Control of Büchi - completeness)

If there is a strategy *f* s.t. every play compliant with it wins $\bigwedge_i \Box \diamondsuit G_i$. Every node v from which f is winning remains in every approximation of the fixpoint greatest: Consider some G_i . From v there is a maximum on the length of paths to reach $G_i \wedge cpre$ (greatest) (König's lemma). Prove by induction on the number of iterations in the first fixpoint that win⊆ greatest. Generalized Büchi: For greatest₀ = V this is clear. Assur 1. fix (greatest := V) foreach (*G_i*) every node $v \in win$ it must be that v_{3}^{2} . fix (least := $G_i \wedge cpre$ (greatest) reach $G_i \wedge cpre(win)$. least := least V cpre(least); 4. end // fix least 5. 6. greatest := least;

7. end // foreach

8. end // fix greatest

Lecture 4: Bypassing Determinization

Lecture 4: Bypassing Determinization

Oops ...

- The clients do not release the bus!
- It's not only the system that has to do good things.
- The environment has to do good things as well!
- We need: $(\Lambda_j \Box \diamondsuit A_j) \rightarrow (\Lambda_i \Box \diamondsuit G_i)$
- We call this Generalized Reactivity (1) or GR(1).

Solving GR(1) Games

Generalized Reactivity (1):

1.	fix (greatestZ := V)
2.	foreach (<i>G_i</i>)
3.	fix (leastY := G _i ∧ cpre(greatestZ))
4.	leastY := leastY V <i>cpre</i> (leastY);
5.	foreach (<mark>A_j)</mark>
6.	fix (greatestX := V)
7.	greatestX := least V $(\neg A_j \land cpre(greatestX))$
8.	end // fix greatestX
9.	<pre>leastY := leastY V greatestX;</pre>
10	end // foreach <mark>A</mark>
11	end // fix leastY
12	greatestZ :=leastY;
13	end // foreach G
14	. end // fix greatestZ

Lecture 4: Bypassi

N. Piterman

Proof (Control of GR(1) –Soundness) Suppose that greatestZ is not empty. For each G_i the inner fixpoint starting from greatestZ recomputes greatestZ. Let $leastY_0^i$, $leastY_1^i$, $leastY_2^i$, ... be the sequence of values that leastYhas during the last iteration. Each least Y_k^l is equal to the union of greatest $X_{k}^{i,1}$, greatest $X_{k}^{i,2}$, ..., greatest $X_{k}^{i,m}$. Consider $v \in \text{greatestZ}$. Let k_0 be the minimal index such that $v \in \text{leastY}_{k_0}^i$ and let j_0 be the minimal such that $v \in \text{greatestX}_{k_0}^{i,j_0}$. By definition of *cpre*, P0 can control to reach in one move greatest $X_{k_1}^{i,j_1}$ such that either (A) $k_1 < k_0$ or (B) $k_1 = k_0$ and $j_1 = j_0$. In case (B), we know that $v \models \neg A_{i_0}$. So by playing this strategy, P0 can ensure that either some *A* is visited finitely often, or reach least $Y_0^i \wedge cpre$ (greatest Z).

By repeating the same for all G_i P0 can enforce $(\wedge_i \Box \Diamond A_i) \rightarrow (\wedge_i \Box \Diamond G_i)$

	fix (greatestZ := V)
	foreach (<mark>G_i)</mark>
	fix (leastY := G _i ∧ cpre(greatestZ))
	<pre>leastY := leastY V cpre(leastY);</pre>
	foreach (A _i)
	fix (greatestX := V)
	greatestX := least V (¬A _i ∧ cpre(greatestX))
	end // fix greatestX
	<pre>leastY := leastY V greatestX;</pre>
0.	end // foreach A
1.	end // fix leastY
2.	greatestZ :=leastY;
3.	end // foreach G
4.	end // fix greatestZ

Lecture 4: Bypassing Determinization

Proof (Control of GR(1) – completeness sketch)

If there is a strategy f s.t. every play compliant with it wins $(\wedge_j \Box \diamondsuit A_j) \rightarrow (\wedge_i \Box \diamondsuit G_i)$

Every \boldsymbol{v} from which \boldsymbol{f} is winning remains in every approximation of the fixpoint greatestZ:

As before, consider some G_i . From v there is a maximum on the number of visits to A_j before arriving to $G_i \wedge cpre(win)$ (König's lemma).

Prove by induction on the number of iterations in the first fixpoint that win \subseteq greatestZ.

For greatest $Z_0 = V$ this is clear. Assume win \subseteq greatest Z_l . Then for every $v \in$ win it must be that $v \in \text{least}Y_k^i$ for some k.

1.	fix (greatestZ := V)
2.	foreach (G _i)
3.	fix (leastY := $G_i \wedge cpre$ (greatestZ))
4.	<pre>leastY := leastY V cpre(leastY);</pre>
5.	foreach (A_i)
6.	fix (greatestX := V)
7.	greatestX := least V $(\neg A_i \land cpre(greatestX))$
8.	end // fix greatestX
9.	leastY := leastY V greatestX;
10.	end // foreach A
11.	end // fix leastY
12.	greatestZ :=leastY;
13.	end // foreach <mark>G</mark>
14.	end // fix greatestZ

Memorizing Intermediate Values

Generalized Reactivity (1):
1. fix (greatestZ := V)
2. foreach (G_i)
3. <i>cY</i> := 0;
4. fix (leastY := $G_i \wedge cpre$ (greatestZ))
 leastY := leastY V cpre(leastY);
6. foreach (A_i)
7. fix (greatestX := V)
8. greatestX := least V $(\neg A_i \land cpre(greatestX))$
9. end // fix greatestX
10. $x[G_i][cY][A_i] := \text{greatestX};$
11. leastY := leastY V greatestX;
12. end // foreach <i>A</i>
13. $y[G_i][cY] := \text{leastY};$
14. $cY := cY + 1;$
15. end // fix leastY
16. greatestZ :=leastY;
17. end // foreach <i>G</i>
18. end // fix greatestZ

Construct the Realizing Machine

 $\left(\theta_e \wedge \Box \rho_e \wedge (\wedge_j \Box \Diamond A_j)\right) \rightarrow \left(\theta_s \wedge \Box \rho_s \wedge (\wedge_i \Box \Diamond G_i)\right)$ • Embed θ_e , ρ_e , θ_s , and ρ_s into $G = \langle V, V_0, V_1, E, \varphi \rangle$, where $\varphi = (\wedge_i \Box \Diamond A_i) \to (\wedge_i \Box \Diamond G_i)$ • Set let $m = |\{G_i\}|$ and $n = |\{A_i\}|$. • Construct a machine *M* realizing φ : $M = \langle 2^{\mathcal{I}}, 2^{\mathcal{O}}, 2^{\mathcal{I} \cup \mathcal{O}} \times [1..m] \cup \{s_0\}, \rho, s_0, L \rangle:$ $\rho(s_{0}, i) = \begin{cases} \theta_{s} & i \models \theta_{e} \\ T & i \models \neg \theta_{e} \end{cases}$ $\rho((i, o, l), i') = \begin{cases} (i', o', l \oplus 1) & (i, o) \models G_{l} \land (i', o') \in \text{win} \\ (i', o', l) & (i, o) \in y[G_{l}][cY] \land (i', o') \in y[G_{l}][< cY] \\ (i, o) \models \neg A_{j} \land (i, o) \in x[G_{l}][cY][A_{j}] \land \\ (i', o', l) & (i', o') \in y[G_{l}][\le cY][\le A_{j}] \end{cases}$ Lecture 4: Bypassing Determinization

Optimizing Symbolic Runtime

Generalized Reactivity (1):
1. fix (greatestZ := V)
2. foreach (G_i)
3. <i>cY</i> := 0;
4. fix (leastY := $G_i \wedge cpre$ (greatestZ))
 leastY := leastY V cpre(leastY);
6. foreach (A_i)
7. fix (greatestX := $y[G_i][maxprev]$)
8. greatestX := least V ($\neg A_i \land cpre$ (greatestX))
9. end // fix greatestX
10. $x[G_i][cY][A_i] := \text{greatestX};$
11. leastY := leastY V greatestX;
12. end // foreach <i>A</i>
13. $y[G_i][cY] := \text{leastY};$
14. $cY := cY + 1;$
15. end // fix leastY
16. greatestZ :=leastY;
17. end // foreach <i>G</i>
18. end // fix greatestZ

Back to the Arbiter

Environment:

- Initially:
 - $\neg r_1 \land \neg r_2$
- Transition:

 $\begin{pmatrix} (r_1 \land \neg g_1) \to \bigcirc r_1 \end{pmatrix} \land \\ ((\neg r_1 \land g_1) \to \bigcirc \neg r_1) \land \\ ((r_2 \land \neg g_2) \to \bigcirc r_2) \land \\ ((\neg r_2 \land g_2) \to \bigcirc \neg r_2) \end{pmatrix}$

• Good things:

 $\Box \diamondsuit (\neg r_1 \lor \neg g_1) \land \Box \diamondsuit (\neg r_2 \lor \neg g_2)$

- System:
- Initially:
 - $\neg g_1 \land \neg g_2$
- Transition:
 - $(\neg g_1 \lor \neg g_2) \land$ $((g_1 \leftrightarrow Or_1) \rightarrow (g_1 \leftrightarrow Og_1)) \land$ $((\Box \Box \Box \Box)) \land$
- $\left((g_2 \leftrightarrow \bigcirc r_2) \rightarrow (g_2 \leftrightarrow \bigcirc g_2) \right)$

• Good things: $\Box \diamondsuit (g_1 = r_1) \land \Box \diamondsuit (g_2 = r_2)$

Result of Synthesis

Lecture 4: Bypassing Determinization

But why do you embed safety?

• We started from:

 $\left(\theta_e \wedge \Box \rho_e \wedge (\wedge_j \Box \diamondsuit A_j)\right) \to \left(\theta_s \wedge \Box \rho_s \wedge (\wedge_i \Box \diamondsuit G_i)\right)$

• And ended up with:

 $\left(\wedge_{j} \Box \diamondsuit A_{j}\right) \to \left(\wedge_{i} \Box \diamondsuit G_{i}\right)$

with some modifications to permitted moves in $2^{\mathcal{J}\cup\mathcal{O}}$.

- Are the two the same?
- No!
- What's the difference?
 - Realizability in our game implies realizability of the general formula.
 - Other direction is not true.

N. Piterman

Some applications

Lecture 4: Bypassing Determinization

Valet Parking Without a Valet

David C. Conner, Hadas Kress-Gazit, Howie Choset, Alfred A. Rizzi, and George J. Pappast

Where's Waldo? Sensor-Based Temporal Logic Motion Planning Hadas Kress-Gazit, Georgios E. Fainekos and George J. Pappas 1 3

Automatic Synthesis of Robust Embedded Control Software

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

Lecture 4: Bypassing Determinization

Robotics Approach Overview

The International Symposium of Robotics Research

→ ISRR 2019: **<u>Robotics Research</u>** pp 509–525

Automatic Encoding and Repair of Reactive High-Level

$$\varphi_{\mathsf{t},\mathsf{pre}}^{\mathsf{s}} = \bigwedge_{a \in A} \Box \left[\neg \left(\bigvee_{\sigma_p \in \sigma_{\mathsf{pre}(a)}} \left(\bigwedge_{\sigma \in \sigma_p} \sigma \right) \right) \to \neg a \right]$$

$$\varphi_{\mathsf{t},\mathsf{eff}}^{\mathsf{e}} = \bigwedge_{a \in A} \Box \left[a \to \bigvee_{j \in \{1,\ldots,k(a)\}} \left(\left(\bigwedge_{\sigma \in \sigma_{\mathsf{eff}^{j}(a)}^{\top}} \bigcirc \sigma \right) \wedge \left(\bigwedge_{\sigma \in \sigma_{\mathsf{eff}^{j}(a)}^{\perp}} \bigcirc \neg \sigma \right) \wedge \left(\bigwedge_{\sigma \in \sigma_{\mathsf{eff}^{j}(a)}^{\mathsf{stay}}} (\sigma \leftrightarrow \bigcirc \sigma) \right) \right) \right]$$

$$\varphi^{\mathsf{e}}_{\mathsf{t},\mathsf{no_act}} = \Box \left[\left(\bigwedge_{a \in A} \neg a \right) \to \left(\bigwedge_{\sigma \in \varSigma} (\sigma \leftrightarrow \bigcirc \sigma) \right) \right]$$

G B B G G 1 2 AP AT DEDA

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

IEEE Robotics and Automation Letters

David Gundana 🕩 ; Hadas Kress-Gazit 🕩

Event-Based Signal Temporal Logic Synthesis for Single and Multi-Robot Tasks

$$\Psi_{host} = G \left(lead \Rightarrow \begin{pmatrix} (F_{[0,25]}(\| \mathbf{x}_{1,t} - \mathbf{x}_{cstmr,1,t} \| < 1) & \land \\ (\| \mathbf{x}_{1,t} - \mathbf{x}_{cstmr,1,t} \| < 1) U_{[25,60]}(\| \mathbf{x}_{1,t} - [1.75, -1] \| < 1) & \land \end{pmatrix} \right)$$

$$\Psi_{request_k} = G\left(request_k \Rightarrow F_{[0,20]}\left(\begin{array}{c} \left(\left(\parallel \mathbf{x}_{2,t} - \mathbf{x}_{cstmr,k,t} \parallel < 1\right) \lor \left(\parallel \mathbf{x}_{3,t} - \mathbf{x}_{cstmr,k,t} \parallel < 1\right)\right) \land \\ \left(\left(\parallel \mathbf{x}_{4,t} - \mathbf{x}_{cstmr,k,t} \parallel < 1\right) \lor \left(\parallel \mathbf{x}_{5,t} - \mathbf{x}_{cstmr,k,t} \parallel < 1\right)\right) & \land \end{array}\right)\right)$$

 $\Psi_{collision} = G_{[0,\infty]}(\parallel \mathbf{x}_{i,t} - \mathbf{x}_{j,t} \parallel > 0.05), \forall i \neq j$

 $\Psi_{wallAvoid_i} = G_{[0,\infty]}(min(\| \mathbf{x}_{i,t} - M \|) > 0.1), i = (1, 2, \dots, 5)$

 $\neg alarm \lor \pi_{\mu_1,[0,10]} \qquad \pi_{\mu_1,[0,10]}$

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022

IEEE International Conference on Robotics and Automation (ICRA) Iterator-Based Temporal Logic Task Planning

Sebastián A. Zudaire; Martin Garrett; Sebastián Uchitel

MovementModel = (go[Rooms][Locations] -> GoModel), GoModel = (arrived[Rooms][Locations] -> MovementModel).

Adjacency = InRoom1, //Start in room θ InRoom1 = (go[1][Locations] -> InRoom1 | go[2][Locations] -> InRoom2), //From Room1 we can go to Room1 or Room2 InRoom2 = (go[2][Locations] -> InRoom2 | go[3][Locations] -> InRoom3), //From Room2 we can go to Room2 or Room3 InRoom3 = (go[3][Locations] -> InRoom3 | go[1][Locations] -> InRoom1). //From Room3 we can go to Room3 or Room1

```
Room(Id=1) = Elem[0],
Elem[i:Locations] = (when (i<M) go[Id][i+1] -> arrived[Id][i+1] -> Elem[i+1] |
when (i>0) go[Id][i-1] -> arrived[Id][i-1] -> Elem[i-1]).
```

PersonSensor = (sense -> Sensing), Sensing = ({yes.person,no.person} -> PersonSensor).

ltl_property SenseAtEachLoc = [](arrived[Rooms][Locations] -> (!go[Rooms][Locations] W {yes.person,no.person}))

```
fluent WentLocRoom[j:1..N][i:0..M] = <arrived[j][i],yes.person>
fluent FoundPerson = <yes.person,Alphabet\{yes.person}>
```

assert	VisitedRoom1	=	((WentLocRoom[1][0]	&&	WentLocRoom[1][1]	&&	WentLocRoom[1][2])	FoundPerson)
assert	VisitedRoom2	=	((WentLocRoom[2][0]	&&	WentLocRoom[2][1]	&&	WentLocRoom[2][2])	FoundPerson)
assert	VisitedRoom3	=	((WentLocRoom[3][0]	&&	WentLocRoom[3][1]	88	WentLocRoom[3][2])	FoundPerson)

```
controllerSpec ControlSpec = {
    safety = {}
    assumption = {}
    liveness = {VisitedRoom1,VisitedRoom2}// ,VisitedRoom3}
    controllable = {Controllables}
```

Bibliography

- 1. Safraless Decision Procedures (O. Kupferman and M.Y. Vardi), FOCS 2005, 531-542.
- 2. Bounded Synthesis (B. Finkbeiner and S. Schewe), *STTT*, Vol. 15, No. 5-6, pp. 519-539, 2013.
- 3. Unbeast: Symbolic Bounded Synthesis (R. Ehlers), TACAS 2011, 272-275.
- 4. Synthesis of Reactive(1) Designs (R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa'ar), *Journal of Computer and System Sciences*, Vol. 78, No. 3, 911-938, 2012.
- 5. Valet Parking Without a Valet (D.C. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G.J. Pappas), *Conference on Intelligent Robots and Systems* 2007, 572-577.

Lectures Outline

- Introduction
- Automata and Linear Temporal Logic
- Games and Synthesis
- General LTL Synthesis
- Bypassing Determinization
- <u>Current Research Directions</u>

	t Research Directions Strategic Reasoning	N. Piterm
• Using • Connec • Logics,	sames and reasoning about strategies for designing multi-agent systems. tions to algorithmic game theory. games, equilibria,	
Reactive Synthesi	3, MOVEP Summer School, Aalborg, 2022	1
Lecture 5: Currer	Research Directions Is Implication the Right Thing?	N. Piterm
	• We've seen that $(\theta_e \land \Box \rho_e \land (\land_j \Box \diamondsuit A_j)) \to (\theta_s \land \Box \rho_s \land (\land_i \Box \diamondsuit G_i))$ is handled by restricting permitted moves and solving $(\land_i \Box \oslash A_i) \to (\land_i \Box \oslash G_i)$	
	Example. Let x and y be Boolean input and output variables. Consider the specification: $(\Box(O_x) \land \Box(O_x \leftrightarrow O_x)) \Rightarrow (\Box(O_x \leftrightarrow O_x) \land \Box(O_x \lor O_x))$	
	It is clearly realizable (just set y to false).	
	But $\left(\left(-\left(-\left(-\left(-\left(-\left(-\left(-\left(-\left(-\left($	
	But $\left(\left(\Box ((\Box \bigcirc x) \to (\bigcirc x \leftrightarrow \bigcirc y)) \right) \land (\Box \bigcirc x \to (\bigcirc \Box \bigcirc (x \leftrightarrow y) \to \Box \bigcirc \neg y)) \right)$	
	But $\left(\left(\Box \left((\Box \bigcirc x) \to (\bigcirc x \leftrightarrow \bigcirc y) \right) \right) \land (\Box \bigcirc x \to (\land \Box \diamondsuit (x \leftrightarrow y) \to \Box \diamondsuit \neg y) \right) \right)$ is not.	

Distributed Synthesis

- We want to co-synthesize controllers that will control different variables and collaborate.
- An architecture $A = (P, e, \mathcal{V}, I, O)$, where:
 - *P* is a set of processes.
 - $e \in P$ the environment.
 - \mathcal{V} set of (Boolean) variables.
 - $-I: P \rightarrow 2^{\mathcal{V}}$ input connectivity function.
 - $0: P \to 2^{\mathcal{V}} \text{ output connectivity function.}$ $\forall p_1, p_2. O(p_1) \cap O(p_2) = \emptyset$ $\mathcal{V} = \bigcup_{p \in P} O(p)$
- An implementation for $p \in P$ is $(2^{I(p)})^+ \to 2^{o(p)}$.

As before, we would like to replace $(2^{I(p)})^+$ by some (finite) domain D_p .

• Given implementations $\{T_p\}_{p \in P}$ for all processes, their composition $\|_p T_p$ includes all possible matching interactions.

The Synthesis Problem

- Given an architecture $A = (P, e, \mathcal{V}, I, O)$ and a specification φ over \mathcal{V} , do there exists implementations $\{T_p\}_{p \in P}$ such that $\|_p T_p$ satisfies φ ?
- In general the problem is undecidable.
 - It is enough to have an architecture with two processes with separate inputs.

- If the architecture contains an information fork, synthesis for it is undecidable.
- Some architectures are possible:

But complexity is non-elementary.

What are my options?

- Bounded synthesis:
 - Use the bounded synthesis for each process separately.
 - Synthesize all the processes together.
- Construct dominant strategies inductively:
 - For a process construct a dominant strategy for the full specification.
 - Extract from the dominant strategy the assumptions for other processes.
 - Synthesize a dominant strategy for specification and new assumptions for all others.
- Use Zielonka/Asynchronous Automata.
 - Communication by synchronous message passing (blocking multicast).
 - More architectures are decidable.
 - Sending of Full information leads to algorithmic distribution.

Safety of Learned Behaviour

- Use formal specifications at learning and at runtime:
 - Shield synthesis create controllers that accompany a learner and restrict attention to safe actions.

Anan Hayers Handardina (2017)

International Symposium on Leveraging Applications of Formal Methods

SoLA 2020: Leveraging Applications of Formal Methods, Verification and Validation: Verification Principles pp 290–306

Shield Synthesis for Reinforcement Learning

Bettina Könighofer 🖾, Florian Lorber, Nils Jansen & Roderick Bloem

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

→ TACAS 2020: Tools and Algorithms for the Construction and Analysis of Systems pp 306–323 Cite as

Good-for-MDPs Automata for Probabilistic Analysis and Reinforcement Learning

Ernst Moritz Hahn 🗁, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi & Dominik Wojtczak

Strategic Reasoning

- Using games and reasoning about strategies for designing multi-agent systems.
- Connections to algorithmic game theory.
- Logics, games, equilibria, ...

Concurrent Game Structures

- A concurrent game structure $G = \langle AP, Ag, Ac, St, \lambda, \tau, s_0 \rangle$:
 - *AP* atomic set of propositions.
 - -Ag set of agents.
 - *Ac* set of actions.
 - *St* set of states.
 - $-\lambda: St \rightarrow 2^{AP}$ labeling function.
 - $-\tau: St \times Ac^{Ag} \rightarrow St$ transition function.
- History / track: $\rho \in St^*$.
- Strategy: $f: St^* \rightarrow Ac$.
- Strategy profile: $\{f_{ag}\}_{ag \in Ag}$.
- A strategy profile defines exactly one infinite run.

Logics and Equilibria

• Alternating Temporal Logic – quantify existentially and universally about abilities of coalitions.

$\langle \langle X \rangle \rangle \diamondsuit P$

- Strategy logic quantify existentially and universally about individual strategies. $\exists x_1, x_2 \forall x_3, x_4 \diamondsuit P(x_1, x_2, x_3, x_4)$ $\exists x_1, x_2 \forall x_3, x_4 \diamondsuit P(x_1, x_2) \land \Box Q_1(x_1, x_4) \land \Box Q_2(x_2, x_3)$
- Nash equilibrium a strategy profile such that if a player deviates, other players can join forces to punish them.
- Subgame perfect equilibrium a strategy profile that is optimal from every location in the game.

N. Piterman

Rationality

- What does it mean for an agent to be rational?
- Nash equilibrium in Boolean context?
- Rational synthesis ...
- Dominant strategies ...
- Good-enough synthesis ...

Related Work / Open Problems

- Other determinization [Křetínský, Esparza, ...].
- History Determinization (GFG) [HP06, Boker, Lehtinen, ...]
- Partial information [Chatterjee, Doyen, Raskin, ...].
- Stochastic elements [Chatterjee, Kucera, ...].
- Real time [Alur, Maler, Larsen, ...].
- Quantitative Objectives [Henzinger, Kupferman, Raskin, ...].
- Distributed Synthesis [Muschol, Finkbeiner, Raskin, Walukiewicz, ...].

Summary

- Theoretical solution well known since 1969/1989.
- Still provides motivation for a lot of theoretical and practical work.
- In theory, theory and practice are the same.
- Thank you.