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Programming

function

function

A function defines a relation between inputs and outputs.
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Doesn’t quite work …
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Computation vs. Reactivity
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Reactive Systems

• Systems whose main aim is to interact rather than compute (OS, driver, CPU, car 
controller).

• Main complexity is in maintaining communication with a user / another program / 
the environment.

• Reactive systems are notoriously hard to design.
• Major efforts are invested in development and validation of reactive systems.
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The Requirement Language

• Correctness of computational programs is expressed as Hoare triples.
𝑃 𝐶{𝑄}

• Correctness of reactive programs is expressed as behavioral specifications:
– The behavior of a system is a sequence of system states.
– Specification should tell us when a sequence is good/bad.
– We use temporal logic: connect states through time.
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Validating Reactive Systems

• Simulations:
– Run the system and check whether behavior satisfies specifications.

• Model checking:
– Create a comprehensive model of the system and check whether all behaviors

satisfy specifications.
• Model checking research:
– Automatic construction of models.

• Predicate extraction.
• Heap analysis.
• Counter-example guided abstraction refinement.

– Techniques for model exploration.
• Efficient enumerative graph exploration.
• Symbolic representation of states.
• Bounded model checking and SAT/SMT solving.

– Specification.
• Expressive specification languages.
• Translation to model exploration.
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Synthesis

• Developing systems is hard, expensive, and error prone.
• The common solution is extensive testing and verification.
• If we can verify, why not go directly from specification to correct-by-construction

systems by synthesis?
• Church’s synthesis problem:

Given a circuit interface specification and a behavioral specification:
– Determine if there is an automaton that realizes the specification.
– If the specification is realizable, construct an implementing automaton.

• Circuit interface – partition to inputs and outputs.
• Behavioral specification – description in first order logic.



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 10

Synthesis from Temporal Specifications

• Is it possible to realize this specification?
• The formula defines a relation between i: ℕ → {0,1} and 
o1, o2: ℕ → {0,1}

• We want a function that is a subset. 

i

o1

o2

∀𝑡. ¬𝑜1 𝑡 ∨ ¬𝑜2 𝑡

∀𝑡. 𝑖 𝑡 → ∃𝑡′ > 𝑡. 𝑜1 𝑡 ∨ 𝑜2 𝑡

∀𝑡. 𝑜1 𝑡 → ∃𝑡′ < 𝑡. 𝑖 𝑡′ ∧ ∀𝑡′ < 𝑡′′ < 𝑡. ¬𝑜1 𝑡′′ ∧ ¬𝑜2 𝑡′′

∀𝑡. 𝑜2 𝑡 → ∃𝑡′ < 𝑡. 𝑖 𝑡′ ∧ ∀𝑡′ < 𝑡′′ < 𝑡. ¬𝑜1 𝑡′′ ∧ ¬𝑜2 𝑡′′

∀𝑡. 𝑜1 𝑡 → ∀𝑡′ > 𝑡. ¬ 𝑜1 𝑡′ ∨ ∃𝑡 < 𝑡′′ < 𝑡′. 𝑜2 𝑡′′

∀𝑡. 𝑜1 𝑡 → ∀𝑡′ > 𝑡. ¬ 𝑜2 𝑡′ ∨ ∃𝑡 < 𝑡′′ < 𝑡′. 𝑜1 𝑡′′
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Causal

• The relation 𝑅 = 𝑖, 𝑜 𝑖: ℕ → 0,1 , 𝑜: ℕ → 0,1 , 𝑜 0 ↔ (∃𝑡. 𝑖 𝑡 )} is not empty.
• Find a function that implements it.
• The function cannot be clairvoyant.
• It needs to be causal: o n = f i ∣ 0,…,𝑛

𝑜 0 ↔ (∃𝑡. 𝑖 𝑡 )
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Adversarial

• There are some input sequences for which this is possible.
• But not all!
• We want a function that can answer all input sequences.

𝑓: 𝑖: 0, … , 𝑛 → 0,1 𝑛 ∈ ℕ → {0,1}

• Furthermore, for every i: ℕ → {0,1} the unique o:ℕ → 0,1 such that o n = f(i ∣ 0,…,𝑛 ) for 
every 𝑛 ∈ ℕ satisfies the specification.

∀𝑡. 𝑖 𝑡 → ¬𝑜 𝑡
∀𝑡. 𝑖 𝑡 → ∃𝑡′ > 𝑡. 𝑜(𝑡′)
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Brief History

• Church’s problem [1965].
• Rabin introduces automata on infinite trees. Effectively, generalizing Büchi’s work on 

ω-automata to trees [1969].
• Büchi and Landweber define two-player games of infinite duration [1969].
• We now know that the two are effectively the same. These are still the techniques we 

use to solve the problem.
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Modern Times

• Pnueli introduces linear temporal logic [1977].
• Emerson and Clarke and Quielle and Sifakis invent model checking [1981].
• Emerson and Clarke and Manna and Wolper ignore adversarial nature and propose 

reduction to satisfiability [1984].
• Pnueli and Rosner establish LTL realizability to be 2EXPTIME-complete.
– This result established realizability and synthesis as highly intractable.
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In these Lectures

• Synthesis as a game.
• Simple games (safety, reachability, Büchi).
• LTL Synthesis reduced to solution of parity games.
• Bypassing determinization:
– Safraless approach.
– Restricting the specification langauge.
– Usage of synthesis in robotics.

• Current research direcions:
– Distributed synthesis.
– Safety of learned behaviour.
– Strategic reasoning.
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Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Current Research Directions
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A More Formal Context

• A specification in linear temporal logic over input and output propositions.
• A system will be an automaton with output.
• Input and output are combined to create a sequences of assignments to propositions.
• All possible infinite paths over the automaton should satisfy the specification.
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Linear Temporal Logic

• A set of propositions (𝒫𝑟𝑜𝑝) denoting the basic facts about the world. Set 𝒫𝑟𝑜𝑝 is 
partitioned to inputs ℐ and outputs 𝒪.

• Linear Temporal Logic formulae are constructed as follows:

• Other temporal formulae are derived:
–

–

–

–

–

–

– Eventually.
– Always.
– Weak Until.
– Previously.
– Historically.
– BackTo.
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≠

LTL Semantics

• A model for an LTL formula    is an infinite sequence 𝜎 = 𝜎0, 𝜎1, …with a designated 
location 𝑗 ≥ 0.

• Each letter 𝜎𝑖 is a set of propositions true at time 𝑖.
• Formula 𝜑 holds over sequence 𝜎 in location 𝑖 ≥ 0, denoted 𝜎, 𝑖 ⊨ 𝜑, if:
– If 𝜑 is a proposition 𝜎, 𝑖 ⊨ 𝜑 ⟺ 𝜑 ∈ 𝜎𝑖
– 𝜎, 𝑖 ⊨ ¬𝜑 ⟺ 𝜎, 𝑖 ⊨ 𝜑
– 𝜎, 𝑖 ⊨ 𝜑1 ∨ 𝜑2 ⟺ 𝜎, 𝑖 ⊨ 𝜑1or 𝜎, 𝑖 ⊨ 𝜑2

– 𝜎, 𝑖 ⊨ 𝜑 ⟺ 𝜎, 𝑖 + 1 ⊨ 𝜑
– 𝜎, 𝑖 ⊨ 𝜑 ⟺ 𝑖 > 0 and 𝜎, 𝑖 − 1 ⊨ 𝜑
– 𝜎, 𝑖 ⊨ 𝜑1𝑈𝜑2 ⟺ ∃𝑘 ≥ 𝑖. 𝜎, 𝑘 ⊨ 𝜑2 and ∀𝑖 ≤ 𝑗 < 𝑘. 𝜎, 𝑗 ⊨ 𝜑1
– 𝜎, 𝑖 ⊨ 𝜑1𝑆𝜑2 ⟺ ∃𝑘 ≤ 𝑖. 𝜎, 𝑘 ⊨ 𝜑2 and ∀𝑖 ≥ 𝑗 > 𝑘. 𝜎, 𝑗 ⊨ 𝜑1

• Derived:
– 𝜎, 𝑖 ⊨ 𝜑 ⟺ ∃𝑘 ≥ 𝑖 𝜎, 𝑘 ⊨ 𝜑
– 𝜎, 𝑖 ⊨ 𝜑 ⟺ ∀𝑘 ≥ 𝑖. 𝜎, 𝑘 ⊨ 𝜑
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LTL Exercises

?

?

?
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• Systems with discrete states.
• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0〉, where
– Σ – a finite input alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with state and an input letter a set 

of successor states.
– 𝑞0– an initial state. 

• An input word w = 𝜎0, 𝜎1, … is a sequence of letters from Σ. 
• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every 
i ≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• An automaton is deterministic if for every 𝑞 ∈ 𝑄 and 𝜎 ∈ Σ we have 𝛿 𝑞, 𝜎 ≤ 1.

Automata



Lecture 1: Introduction and Background N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 22

• Systems with discrete states.
• Formally, 𝑀 = 〈Σ, Δ, 𝑄, 𝛿, 𝑞0, 𝐿〉, where
– Σ – a finite input alphabet.
– Δ – a finite output alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with every state and an input letter

a set of successor states.
– 𝑞0– an initial state. 
– 𝐿: 𝑄 × Σ → Δ – an output function. Associates with every transition an output letter.

• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every i
≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• The computation correspoinding to r = q0, q1, … over 𝑤 is c

= 𝜎0, 𝐿 𝑞0, 𝜎0 , 𝜎1, 𝐿 𝑞1, 𝜎1 , … .

Mealy Machines
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Mealy Machines and LTL

• The set of computations of a machine 𝑀 = Σ, Δ, 𝑄, 𝛿, 𝑞0, 𝐿 is  denoted ℒ M . 
• Assume Σ = 2ℐand Δ = 2𝒪. So input letters are assignments to input propositions and 

outputs are assignments to output propositions. 
• A machine 𝑀 satisfies a formula 𝜑, denoted 𝑀 ⊨ 𝜑, if every computation in ℒ(M)

satisfies 𝜑.
• Given an LTL formula 𝜑 over propositions 𝒫𝑟𝑜𝑝 = ℐ ∪ 𝒪 we say that 𝜑 is realizable if 

there is a Mealy machine that satisfies it. 
• Our task is going to be to find such a Mealy machine or say that it does not exist.
• We will mostly be interested in deterministic machines.
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• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Current Research Directions
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Realizability

• So, given a property 𝜑 and a partition 𝒫𝑟𝑜𝑝 = ℐ ∪ 𝒪 find a system 𝑀such that 𝑀 ⊨ 𝜑.
• For every possible input, decide on an output …
• All paths through the machine should satisfy the property.
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Arbiter
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Arbiter2

• Propositions 𝒫𝑟𝑜𝑝 = 𝑟1, 𝑟2, 𝑔1, 𝑔2 , where ℐ = 𝑟1, 𝑟2 and 
𝒪 = 𝑔1, 𝑔2 .

• Requirements:
– 𝐴1: leave requests: 𝑟1 ∧ ! 𝑔1 →∘ 𝑟1 ∧ (𝑟2 ∧ ! 𝑔2 →∘ 𝑟2)
– 𝐺1: leave  grants:  𝑟1 ∧ 𝑔1 →∘ 𝑔1 ∧ (𝑟2 ∧ 𝑔2 →∘ 𝑔2)
– 𝐺2: mutual exclusion: ! 𝑔1 ∨ ! 𝑔2
– 𝐺3: deliver and remove grants:        𝑔1 ↔ 𝑟1 ∧ 𝑔2 ↔ 𝑟2

• Or together: A1 → 𝐺1 ∧ 𝐺2 ∧ 𝐺3
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What’s the idea?

• Think about control:
– Some things are under our control.
– Some things are not.

• We want to exercise our control so that to achieve certain goals.
• In some cases the environment is hostile.
• What we want:
– Find a strategy that will guide our actions based on our view of the world.

• This leads to viewing the world as an opponent:
– Exercise control so that uncontrollable events do not lead to damage.

• We model this as two-player games.
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Example: Nim

• Some rows of matches. 
• Every player removes in turn at least one match from one row.
• The one to remove last match wins.
• Can you win?



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 30

Whose in Control?

• We use graphs with vertices for states and edges for transitions.
• Ownership is by using two types of vertices.
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Environment

System
A Play
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Games

• Formally, a game is 𝐺 = 𝑉, 𝑉0, 𝑉1, 𝐸, 𝛼 , where
– 𝑉 is a set of nodes.
– 𝑉0 and 𝑉1 form a partition of 𝑉.
– 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

• A play is 𝜋 = 𝑣0, 𝑣1, …
– 𝛼 is a set of winning plays.

• A strategy for player 𝑖 is a function 𝑓𝑖: 𝑉
∗ ⋅ 𝑉𝑖 → 𝑉 such that v, 𝑓𝑖 𝑤 ⋅ 𝑣 ∈ 𝐸.

• A play 𝜋 = 𝑣0, 𝑣1, … is compatible with 𝑓𝑖 if for every 𝑗 ≥ 0 such that 𝑣𝑗 ∈ 𝑉𝑖 we have 

𝑣𝑗+1= 𝑓𝑖(𝑣0⋯𝑣𝑗).

• A strategy for player 0 is winning if every play compatible with it is in 𝛼. A strategy
for player 1 is winning if every play compatible with it is not in 𝛼.

• A node 𝑣 is won by player 𝑖 if she has a winning strategy for all plays starting from 
𝑣.
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Control Predecessor

• In control it is easier to walk backwards.
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Environment

System
Game Analysis
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Control Predecessor (for P0)

• Start from an set of nodes 𝑊 ⊆ 𝑉.
• We want to say:
– The system can force the environment to 𝑊 in one move.

• That is: 
– Nodes 𝑣 ∈ 𝑉0 for which some successor is in 𝑊.
– Nodes 𝑣 ∈ 𝑉1 for which all successors are in 𝑊.

• Formally:
𝑐𝑝𝑟𝑒 𝑊 = 𝑣 ∈ 𝑉0 ∃𝑣′ ∈ 𝑊. 𝑣, 𝑣′ ∈ 𝐸 ∪

{𝑣 ∈ 𝑉1 ∣ ∀𝑣
′. 𝑣, 𝑣′ ∈ 𝐸 → 𝑣′ ∈ 𝑊}
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Control Predecessor (for P1)

• Start from an set of nodes 𝑊 ⊆ 𝑉.
• We want to say:
– The environment can force the system to 𝑊 in one move.

• That is: 
– Nodes 𝑣 ∈ 𝑉1 for which some successor is in 𝑊.
– Nodes 𝑣 ∈ 𝑉0 for which all successors are in 𝑊.

• Formally:
𝑐𝑝𝑟𝑒1 𝑊 = 𝑣 ∈ 𝑉1 ∃𝑣′ ∈ 𝑊. 𝑣, 𝑣′ ∈ 𝐸 ∪

{𝑣 ∈ 𝑉0 ∣ ∀𝑣
′. 𝑣, 𝑣′ ∈ 𝐸 → 𝑣′ ∈ 𝑊}
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Let’s solve some games!
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ap

!p
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Safety Games

• Check that P0 can enforce  ♢𝑝.

Lemma. The algorithm computes the set of states winning for P0 with objective  ♢𝑝.
Proof.  Later. 

1. fix (new := p)
2. new := new ∧ 𝑐𝑝𝑟𝑒(new)
3. end // fix



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 59

Reachability Games

• Check that P1 can enforce  ♢¬𝑝.

Lemma. The algorithm computes the set of states winning for P1 with objective  ♢𝑝.
Proof.  Later. 

𝐴𝑡𝑡𝑟𝑖(𝑊) the set of nodes from which player 𝑖 can force reaching 𝑊.

1. fix (new := ¬p)
2. new := new ∨ 𝑐𝑝𝑟𝑒1(new)
3. end // fix
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Safety vs Reachability Games

• Goals  ♢𝑝 for  P0 and ♢ ¬𝑝 for P1 are complementary.

1. fix (new := p)
2. new := new ∧ 𝑐𝑝𝑟𝑒(new)
3. end // fix

1. fix (new := ¬p)
2. new := new ∨ 𝑐𝑝𝑟𝑒1(new)
3. end // fix
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Safety Games

• Check that P0 can enforce  ♢𝑝.

1. fix (new := p)
2. new := new ∧ 𝑐𝑝𝑟𝑒(new)
3. end // fix
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Proof

• Suppose that new is not empty.
Consider 𝑣 ∈ new. Clearly, 𝑣 ∈ 𝑝. But also 𝑣 ∈ 𝑐𝑝𝑟𝑒(new). 
If 𝑣 ∈ 𝑉0, then 𝑣 has a successor 𝑤 such that 𝑤 ∈ new.
If 𝑣 ∈ 𝑉1, then for every successor 𝑤 of 𝑣 we know 𝑤 ∈ new. 

• If there is a strategy s.t. every play compliant with it wins    𝑝.
Let new0, new1, new2, … be the series of approximations of new. We prove by 
induction that for every 𝑣 winning for P0, 𝑣 ∈ newi for every i. 
Clearly, 𝑣 ∈ 𝑝 implies 𝑣 ∈ new0.
Assume every 𝑣 winning for P0 is in newi for some i. Consider 𝑣 ∈ 𝑉0 winning for P0. 
Then, there is 𝑤 such that 𝑣,𝑤 ∈ 𝐸 and 𝑤 winning for P0. Then, 𝑤 in newi and 𝑣 in
newi+1. Consider 𝑣 ∈ 𝑉1 winning for P0. Then, for every 𝑤 such that 
𝑣,𝑤 ∈ 𝐸 we have 𝑤 winning for P0. Then, every 𝑤 such that  𝑣,𝑤 ∈ 𝐸 is in newi. 

So 𝑣 in newi+1.

1. fix (new := p)
2. new := new ∧ 𝑐𝑝𝑟𝑒(new)
3. end // fix
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Büchi Games

• Check that P0 can enforce        𝑝.

Lemma. The algorithm computes the set of nodes winning for P0 with objective        𝑝.

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest
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Büchi Games

• Check that P0 can enforce    𝑝.

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest
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Proof (Control of Büchi –Soundness)

• Suppose that greatest is not empty. For the fixpoint to 
terminate, the inner fixpoint starting from this value 
recomputes it.

• Let least0, least1, least2, … be the sequence of values that least has through the 
computation of this last iteration.

• Consider 𝑣 ∈ greatest. Let 𝑖0 be the index such that 𝑣 ∈ least
𝑖0

. By definition of 
𝑐𝑝𝑟𝑒(⋅), P0 can force a successor 𝑤 of 𝑣. But then, 𝑤 ∈ least

𝑖1
for some 𝑖1 < 𝑖0. 

• This shows that P0 can ensure to reach least0 = 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest). So it ensures 
a visit 𝑝. 
•But now least0 = 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest). So in the next step P0 forces leastj for 

some 𝑗 and repeat this process.
• P0 can enforce 𝑝.

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest
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Proof (Control of Büchi - completeness)

• If there is a strategy 𝑓 s.t. every play compliant with it 
wins  𝑝.

• Every node 𝑣 from which 𝑓 is winning 
remains in every approximation of the fixpoint greatest:
– From 𝑣 there is a maximum on the length of paths to reach 𝑝 (König’s lemma).
– Prove by induction on the number of iterations in the first fixpoint that 

win⊆ greatest.
– For greatest0 = 𝑉 this is clear.  
– Assume win⊆ greatesti. Then for every node 𝑣 ∈ win it must be that 𝑣 ∈ leastj for   

the distance to reach 𝑝 ∧ win.

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest
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Strategy

• A strategy is the way of enforcing the goal.
• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 

the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 𝑉
∗ ⋅ 𝑉0 → 𝑉 such that v, 𝑓𝑖 𝑤 ⋅ 𝑣 ∈ 𝐸.

• We look to replace 𝑉∗ by some (finite) domain 𝐷. Then, instead of considering 𝑉 we 
could consider 𝐷 × 𝑉.

• The strategy is replaced by two functions:

– Move function: 𝑓𝑖
𝑚: 𝐷 × 𝑉𝑖 → 𝑉 s.t. 𝑣, 𝑓 𝑑, 𝑣 ∈ 𝐸.

– Update function: 𝑓𝑖
𝑢: 𝐷 × 𝑉 → 𝐷.
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What about Synthesis?

• Our goal is to construct a Mealy machine that realizes the specification.
– A Mealy machine from every state reads input and answers with output.

• A node in the game corresponding to choice of
input will be followed by node corresponding 
to choice of output.

• We can define a specialized game with nodes in 2ℐ∪𝒪. 
• We can define the winning condition with an LTL formula over ℐ ∪ 𝒪. A play

naturally corresponds to a possible model.
• For a set of nodes 𝑊, define 

𝑐𝑝𝑟𝑒 𝑊 = {𝑣 ∣ ∀𝑥 ∈ 2ℐ . ∃𝑦 ∈ 2𝒪 . (𝑥 ∪ 𝑦) ∈ 𝑊}
• When computing the set of winning states, check that for every 𝑥 ∈ 2ℐ there is 𝑦 ∈ 2𝒪

such that 𝑥 ∪ 𝑦 is winning.
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Further Specialize Strategy

• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 
the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 𝑉
∗ ⋅ 𝑉0 → 𝑉 such that v, 𝑓𝑖 𝑤 ⋅ 𝑣 ∈ 𝐸.

• We look to replace 𝑉∗ by some (finite) domain 𝐷. Then, instead of considering 𝑉 we 
could consider 𝐷 × 𝑉.

• The strategy is replaced by two functions:

– Move function: 𝑓𝑖
𝑚: 𝐷 × 𝑉𝑖 → 𝑉 s.t. 𝑣, 𝑓 𝑑, 𝑣 ∈ 𝐸.

– Update function: 𝑓𝑖
𝑢: 𝐷 × 𝑉 → 𝐷.
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Further Specialize Strategy

• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 
the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 2ℐ∪𝒪
∗
⋅ 2ℐ → 2𝒪.

• We look to replace 𝑉∗ by some (finite) domain 𝐷. Then, instead of considering 𝑉 we 
could consider 𝐷 × 𝑉.

• The strategy is replaced by two functions:

– Move function: 𝑓𝑖
𝑚: 𝐷 × 𝑉𝑖 → 𝑉 s.t. 𝑣, 𝑓 𝑑, 𝑣 ∈ 𝐸.

– Update function: 𝑓𝑖
𝑢: 𝐷 × 𝑉 → 𝐷.



Lecture 2: Games and Synthesis N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 46

Further Specialize Strategy

• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 
the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 2ℐ∪𝒪
∗
⋅ 2ℐ → 2𝒪.

• We look to replace 2ℐ∪𝒪
∗

by some (finite) domain 𝐷. Then, instead of 

considering 2ℐ∪𝒪
∗
we could consider 𝐷 × 2ℐ∪𝒪.

• The strategy is replaced by two functions:

– Move function: 𝑓𝑖
𝑚: 𝐷 × 𝑉𝑖 → 𝑉 s.t. 𝑣, 𝑓 𝑑, 𝑣 ∈ 𝐸.

– Update function: 𝑓𝑖
𝑢: 𝐷 × 𝑉 → 𝐷.
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Further Specialize Strategy

• Let 𝐷 be some memory domain and let 𝑑0 be an initial memory value. Elements in 
the memory domain recall facts about the history of play so far.

• A strategy for player 𝑖 is a function 𝑓𝑖: 2ℐ∪𝒪
∗
⋅ 2ℐ → 2𝒪.

• We look to replace 2ℐ∪𝒪
∗

by some (finite) domain 𝐷. Then, instead of 

considering 2ℐ∪𝒪
∗
we could consider 𝐷 × 2ℐ∪𝒪.

• The strategy becomes 𝑓𝑖: 𝐷 × 2ℐ → 𝐷 × 2𝒪.
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From Strategy to System

Consider a strategy 𝑓0: 𝐷 × 2ℐ → 𝐷 × 2𝒪 and let 𝑑0 ∈ 𝐷 be the initial memory value. 
Construct the machine 𝑀 = Σ, Δ, 𝐷, 𝛿, 𝑑0, 𝐿 with: 
Σ = 2ℐ

Δ = 2𝒪

𝛿 𝑑, 𝑖 = 𝑓0 𝑑, 𝑖 ⇓1
L 𝑑, 𝑖 = 𝑓0 𝑑, 𝑖 ⇓2
What’s the memory domain in the cases we’ve seen?
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Winning → Realizability

Consider a run r = q0, 𝑞1, … over w = 𝜎0, 𝜎1, … and the 

corresponding computation c = 𝜎0, 𝐿 𝑞0, 𝜎0 , 𝜎1, 𝐿 𝑞1, 𝜎1 , … of 
𝑀.
i. For every 𝑖 ∈ 2ℐ there is o ∈ 2𝒪 s.t. (𝑖, 𝑜) is winning.
ii. By 𝑓 winning c satisfies the formula.

Realizability → Winning

Take a machine 𝑀 and use it to construct the winning strategy.
A play in the game is a computation of the machine.
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Memorize Intermediate Values

1. fix (greatest := 𝑉)
2. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least)
4. end // fix least
5. greatest := least
6. end // fix greatest

1. fix (greatest := 𝑉)
2. 𝑐𝑌 ≔ 0;
3. fix (least := 𝑝 ∧ 𝑐𝑝𝑟𝑒(greatest)
4. y[𝑐𝑌]:= least;
5. least := least ∨ 𝑐𝑝𝑟𝑒(least)
6. 𝑐𝑌 ≔ 𝑐𝑌 + 1;
7. end // fix least
8. greatest := least
9. end // fix greatest
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Construct the Realizing Machine

• Given 𝐺 = 2ℐ∪𝒪 ∪ 2ℐ∪𝒪 × 2ℐ , 2ℐ∪𝒪 × 2ℐ , 2ℐ∪𝒪 , 𝐸, 𝑝 .

𝐸 = 𝑖, 𝑜 , 𝑖, 𝑜, 𝑖′ , 𝑖, 𝑜, 𝑖′ , 𝑖′, 𝑜′

• Construct a 𝑀 = 2ℐ , 2𝒪 , 2ℐ∪𝒪 , 𝛿, 𝑠0, 𝐿 :

𝛿 𝑖, 𝑜 , 𝑖′ = ൝
{(𝑖′, 𝑜′) ∣ 𝑖′, 𝑜′ is winning} 𝑖, 𝑜 ∈ 𝑝

{ 𝑖′, 𝑜′ ∣ 𝑖′, 𝑜′ ∈ y[ ≤ 𝑗]} 𝑖, 𝑜 ∈ y[𝑗 + 1]
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Summary

• Starting from an LTL formula 𝜑, construct the game  

𝐺 = 2ℐ∪𝒪 ∪ 2ℐ∪𝒪 × 2ℐ , 2ℐ∪𝒪 × 2ℐ , 2ℐ∪𝒪 , 𝐸, 𝜑 .
• Compute the set win.
• If for every 𝑖 ∈ 2ℐ there is 𝑜 ∈ 2𝒪such that 𝑖, 𝑜 ∈win then declare 𝜑 realizable.
• Extract from the winning strategy a realizing Machine.

• But we only know to solve reachability/safety and Büchi games.
• What about general LTL?
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From Logic to Graphs?

How to embed the logical winning condition 
into the graph notation?
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• Systems with discrete states.
• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0, 𝛼〉, where
– Σ – a finite input alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with state and an input letter a set 

of successor states.
– 𝑞0– an initial state. 
– 𝛼 ⊆ 𝑄– a set of accepting states. 

• An input word w = 𝜎0, 𝜎1, … is a sequence of letters from Σ. 
• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every 
i ≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• A run is accepting if for infinitely many i ∈ ℕ we have qi ∈ 𝛼.
• A word is accepted if  some run over it is accepting.
• The language of 𝐴, denoted ℒ 𝐴 , is the set of words accepted by 𝐴.

Automata as Acceptors
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From LTL to Büchi Automata

Theorem. Given an LTL formula 𝜑 we can construct a nondeterministic Büchi

automaton 𝑁𝜑 such that ℒ 𝑁𝜑 = ℒ 𝜑 . 

The size of 𝑁𝜑 is exponential in the length of 𝜑.

Intuitively, if sub(𝜑) is the set of subformulas of 𝜑, a state of 𝑁𝜑 corresponds to a set of 

subformulas that are true (in an accepting run). 
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Control with Automaton Observer

p !p p

Visit finitely many not-p’s           p

Environment

System
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NBW for         p 

• NBW for 𝜑 = 𝑝:

𝑝,¬𝑝

𝑝

𝑝
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Nondeterminism is bad

p !p p
Environment

System

𝑝,¬𝑝

𝑝

𝑝
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What went wrong?

• The automaton is nondeterministic.
• It makes predictions regarding the future and aborts runs that do not match these 

predictions.
• In the context of games nondeterminism is added as choice of one side:
– If the system resolves nondeterminism, it has to find a solution that matches all 

possible futures.
– If the environment resolves nondeterminism, the system must force all runs to be 

accepting.
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Solution: Determinism

• If the automaton were deterministic, there would be no added choice!
• We create a synchronous parallel composition of the automaton with the game.
• Solve the resulting game.
• Extract system from winning strategy.
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• Systems with discrete states.
• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0, 𝛼〉, where
– Σ – a finite input alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with state and an input letter a set 

of successor states.
– 𝑞0– an initial state. 
– 𝛼:𝑄 → ℕ– a ranking of states. 

• An input word w = 𝜎0, 𝜎1, … is a sequence of letters from Σ. 
• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every 
i ≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• A run is accepting if for the minimum rank to occur infinitely often is even.
• The language of 𝐴, denoted ℒ M , is the set of words accepted by 𝐴.

Automata as Acceptors
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Synchronous Composition of Games

• Consider a game 𝐺 = 𝑉, 𝑉0, 𝑉1, 𝐸, 𝜑 and a deterministic (with respect to entire 
alphabet Σ) automaton 𝐴𝜑 = Σ,𝐷, 𝛿, 𝑑0, 𝛽 .

• Their synchronous parallel composition (G ∥ 𝐴𝜑) is the game, 
෠𝐺 = 〈 ෠𝑉, ෠𝑉0, ෠𝑉1, ෠𝐸, 𝛾〉 where:
– ෠𝑉 = 𝐷 × 𝑉 – a new node holds a game node and an automaton state..
– ෠𝐸 = 𝑑, 𝑣 , 𝑑′, 𝑣′ ∣ 𝑣, 𝑣′ ∈ 𝐸 and 𝑑′ = 𝛿(𝑑, 𝐿 𝑣 ) – the transitions of the 

automaton are updated.
– 𝛾 𝑑, 𝑣 = 𝛽(𝑑) – acceptance only considers the acceptance of the automaton.

• The results is a parity game.
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Deterministic Automata Work!

Theorem. P0 wins 𝐺 with winning condition 𝜑 iff P0 wins G ∥ 𝐴𝜑, where 𝐴𝜑 is a 

deterministic automaton for 𝜑.

If P0 wins 𝐺 all she has to do in G ∥ 𝐴𝜑 is to use the same strategy. Every play in G ∥

𝐴𝜑 corresponds to a play in G and the unique run of 𝐴𝜑that reads this play. But the 

play satisfies 𝜑, so the run must be accepting. So the play in G ∥ 𝐴𝜑 is winning for P0 

as well.
If P0 wins G ∥ 𝐴𝜑 she can use the states of 𝐴𝜑 as (part of) the memory in G. She will 

then be able to use the winning strategy from G ∥ 𝐴𝜑. Now, a play in G corresponds 

to an accepting run of 𝐴𝜑. But then the play satisfies 𝜑, which means that P0 wins.

⇒

⇒
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Two tiny issues …

• How do we get a deterministic parity automata for LTL?
• How do we solve a parity games?
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Deterministic Automata

• Well, the answer is simple: construct a nondeterministic automaton and determinize 
it!

• Starting from an automaton with 𝑛 states:
– Create an automaton with O((𝑛!)2) states and 2𝑛 rank.

• Subset construction augmented with a tree structure. Will not be shown.
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Solving parity Games

Func odd_parity(i, win)
1. fix (least := ∅)
2. least:= win ∨ 𝑣 𝛼 𝑣 ≥ 𝑖} ∧ 𝑐𝑝𝑟𝑒(least)
3. if (i!=max) 
4. least := even_parity(i+1, least)
5. end // fix least
6. Return least;
End // Func odd_parity

Func even_parity(i, win)
1. fix (greatest := 𝑉)
2. greateast := win ∨ 𝑣 𝛼 𝑣 = 𝑖} ∧ 𝑐𝑝𝑟𝑒(greatest)
3. if (i!=max) 
4. greatest := odd_parity(i+1, greatest)
5. end // fix greatest
6. Return greatest;
End // Func even_parity

Func main()
1. Return even_parity(0, ∅);
End // Func main
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Proof (Soundness)

• Suppose that win is not empty. Have the intermediate least fixpoint approximations: 

least0
𝑝

, least1
𝑝

, least2
𝑝

, … for an odd parity 𝑝.

• Consider 𝑣 ∈ win. Let 𝑖1, 𝑖3, … , 𝑖𝑚 be the indices such that 𝑣 ∈ least𝑖𝑗
𝑗

. By definition of 

𝑐𝑝𝑟𝑒(⋅), P0 can force a successor 𝑤 of 𝑣. But then, either (a) for some even 𝑗 we have 
𝑣 ∈ 𝛼 𝑗 and 𝑤 has 𝑖1

′ , 𝑖3
′ , … , 𝑖𝑚

′ such that for 𝑗′ < 𝑗 we have 𝑖𝑗′
′ ≤ 𝑖𝑗′

′ or (b) there is some 

𝑗 such that 𝑤 has 𝑖1
′ , 𝑖3

′ , … , 𝑖𝑚
′ , for 𝑗′ < 𝑗 we have 𝑖𝑗′

′ = 𝑖𝑗′
′ , and for 𝑗 we have 𝑖𝑗

′ < 𝑖𝑗
′.

• Consider an infinite path and what happens to these numbers. There must be an even 
priority that is “reset” infinitely often, showing that P0 wins.
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To Summarize

• Start with a game structure 𝐺 with winning condition 𝜑.
• Construct a deterministic automaton 𝐴𝜑 for 𝜑.

• Construct the product 𝐺 ∥ 𝐴𝜑.

• Solve the game 𝐺 ∥ 𝐴𝜑.

• Construct a winning strategy for 𝐺 ∥ 𝐴𝜑.

• Construct from the winning strategy a Mealy machine
realizing 𝜑.

𝜑 = 𝑛

𝐴𝜑 = 22
𝑂(𝑛 log 𝑛)

𝛼 = 2𝑛

22
𝑂(𝑛2 log 𝑛)

The problem is 2EXPTIME-complete.
• Determinization is an issue.
• Practical solutions of parity games.
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Two Ways to Avoid Determinization

• Replace by counting:
– Search for bounded strategy.
– Express winning through safety games.
– Limited determinization through counting.
– Translate to an SMT problem.

• Concentrate on simpler specifications:
– Both system and environment are Büchi automata.
– Enforce “deterministic” specification.
– State-space exponential. Exponent linear.
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The Automata Theoretic Approach to LTL Model Checking

• Given a Mealy machine 𝑀 = Σ, Δ, 𝑄, 𝛿, 𝑞0, 𝐿 , 𝑀 satisfies a formula 𝜑, denoted 𝑀 ⊨ 𝜑, 
if every computation in ℒ(M) satisfies 𝜑.

• Dually, 𝑀 satisfies a formula 𝜑 if no computation in ℒ(M) satisfies ¬𝜑.
• Use automata for model checking:

– Construct a nondet Büchi automaton 𝑁¬𝜑 such that ℒ 𝑁𝜑 = Σ × Δ 𝜔 ∖ ℒ 𝜑 .

– Take the product of 𝑀 and 𝑁¬𝜑 as a nondet Büchi automaton.

– If 𝑀 ×𝑁¬𝜑 accepts some word, the word corresponds to a computation in ℒ(M) not 

satisfying 𝜑.
• Our goal: 
– Find a Mealy machine 𝑀 and show that 𝑀 ×𝑁¬𝜑 is empty.
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• Systems with discrete states.
• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0, 𝛼〉, where
– Σ – a finite input alphabet.
– 𝑄– a finite set of states. 
– 𝛿: 𝑄 × Σ → 2𝑄– a transition function. Associates with state and an input letter a set 

of successor states.
– 𝑞0– an initial state. 
– 𝛼 ⊆ 𝑄– a set of accepting states. 

• An input word w = 𝜎0, 𝜎1, … is a sequence of letters from Σ. 
• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that for every 
i ≥ 0 we have qi+1 ∈ 𝛿 𝑞𝑖 , 𝜎𝑖 .

• A run is accepting if for infinitely many i ∈ ℕ we have qi ∈ 𝛼.
• A word is accepted if  some run over it is accepting.
• The language of 𝐴, denoted ℒ 𝐴 , is the set of words accepted by 𝐴.

Nondeterministic Büchi Automata 
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LTL Model Checking

Theorem. Given an LTL formula 𝜑 over propositions ℐ ∪ 𝒪 we can construct a nondet

Büchi automaton 𝑁¬𝜑 over alphabet 2ℐ∪𝒪such that ℒ 𝑁¬𝜑 = (2ℐ∪𝒪)𝜔 ∖ ℒ 𝜑 . 

• We have:
– Mealy machine 𝑀 = 2ℐ , 2ℐ , 𝑄, 𝛿, 𝑞0, 𝐿

– Büchi automaton 𝑁¬𝜑 = 2ℐ∪𝒪 , 𝑆, 𝜌, 𝑠0, 𝛼

• Construct:

– 𝑀 ×𝑁¬𝜑 = 2ℐ∪𝒪 , 𝑄 × 𝑆, 𝛿′, 𝑞0, 𝑠0 , 𝑄 × 𝛼 , where

𝛿′ q, s , 𝑖, 𝑜 = {(𝑞′, 𝑠′)|𝛿 𝑠, 𝑖 = 𝑠′, 𝐿 𝑠, 𝑖 = 𝑜, and 𝑞′ ∈ 𝜌(𝑞, 𝑖, 𝑜 )}

• An accepting run r = (q0, 𝑠0) , (q1, 𝑠1), … on word w = 𝜎0, 𝜎1, … is exactly a 
computation of 𝑀 accepted by 𝑁¬𝜑.

• But we are interested in the case that 𝑀 ⊨ 𝜑 …
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Analyze the Graph

• Assume that 𝑀 ×𝑁¬𝜑 = 2ℐ∪𝒪 , 𝑄 × 𝑆, 𝛿′, 𝑞0, 𝑠0 , 𝑄 × 𝛼 is empty (𝑀 ⊨ 𝜑).

• Every run of 𝑀 ×𝑁¬𝜑 contains finitely many accepting states in 𝑄 × 𝛼.

• But how many? 
– Think about 𝑀 ×𝑁¬𝜑 as a graph.

– If there are more than 𝛼 ⋅ |𝑆| accepting states on a path then this is an accepting 
loop. 

– Create a proof that 𝑀 ×𝑁¬𝜑 is empty by adding a function 𝑓: 𝑄 × 𝑆 → ℕ such that:

• 𝑓 𝑞0, 𝑠0 = 𝛼 ⋅ 𝑆

• If for some 𝑖, 𝑜 we have 𝑞′, 𝑠′ ∈ 𝛿′ q, s , 𝑖, 𝑜 then:
– If s ∈ 𝛼 then 𝑓 𝑞, 𝑠 > 𝑓 𝑞′, 𝑠′ .
– If s ∉ 𝛼 then 𝑓 𝑞, 𝑠 ≥ 𝑓 𝑞′, 𝑠′ .
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Bounded Synthesis
• Remember, given 𝜑 (and 𝑁¬𝜑 = 2ℐ∪𝒪 , 𝑆, 𝜌, 𝑠0, 𝛼 ) we want a machine 𝑀 s.t. 𝑀 ⊨ 𝜑.
• What if we search for a machine with at most 𝑚 states?
• We can just “nondeterministically guess” its structure along with the proof that it 

satisfies 𝜑.
• Create an SMT instance Γ:
– Variables encoding transitions:

For j ∈ {1, … ,𝑚} and 𝜎 ∈ 2ℐ have 𝑡𝑟j,𝜎 ∈ {1,… ,𝑚}.
– Variables encoding outputs:

For j ∈ {1, … ,𝑚} and 𝜎 ∈ 2ℐ have 𝑙𝑗,𝜎 ∈ 2𝒪.
– Variables encoding Büchi proof:

For j ∈ {1, … ,𝑚} and 𝑠 ∈ 𝑆 have 𝑓𝑗,𝑠 ∈ {0,… ,𝑚 ⋅ 𝑆 , ⊤} (⊤ > ⊤ and for all k,⊤ > k). 
– Add constraints:
𝑓0,𝑠0 ≠ ⊤
If 𝑠′ ∈ 𝜌(𝑠, 𝜎, 𝑙𝑗,𝜎) and 𝑠 ∈ 𝛼 then 𝑓𝑗,𝑠 > 𝑓𝑡𝑟𝑗,𝜎,𝑠′.

If 𝑠′ ∈ 𝜌(𝑠, 𝜎, 𝑙𝑗,𝜎) and 𝑠 ∉ 𝛼 then 𝑓𝑗,𝑠 ≥ 𝑓𝑡𝑟𝑗,𝜎,𝑠′.
• If Γ is satisfiable there exists a machine of size at most 𝑚 realizing 𝜑 and it can be 

extracted from the satisfying assignment.
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Advantages

• Simple structure of states. 
– Replace the tree structure over sets of states by a function from states to ranks.
– Determinization is a challenge for implementation.

• Safety games compared with parity games. 
– Solution of safety games is much simpler.
– Exact complexity and practical solving of parity games are interesting open 

problems.
• Search for small machines first. 
– By increasing the bound gradually we can ensure to find small implementations 

first (and compute less).
– Information from failed search for small sizes can be reused for searching for larger 

sizes.
– Worst case complexity is as the general technique.

• Add additional quality constraints.
– Low number of loops … 
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Take Another Look at Machines

• A machine 𝑀 = 〈Σ, Δ, 𝑄, 𝛿, 𝑞0, 𝐿〉, where
– Σ = 2ℐ– a finite input alphabet.
– Δ = 2𝒪– a finite output alphabet.
– 𝑄 = 2𝒳– a finite set of states. 

• Express as an LTL formula over ℐ ∪ 𝒪 ∪ 𝒳:
– 𝑞0:

𝜃 = ∨𝑥∈2ℐ 𝑥, 𝐿 𝑞0, 𝑥 ∧ 𝛿(𝑞0, 𝑥)

– 𝛿: 𝑄 × Σ → 2𝑄:

𝜌 = ∧𝑞∈𝑄,𝑥∈2ℐ 𝑞 ∧ 𝑥 → 𝐿(𝑞, 𝑥) ∨𝑞∈𝛿 𝑞,𝜎 𝑞

• We may want to add some “good things” happen often enough:

∧𝑖 ∨𝑞∈𝐺𝑖 𝑞

• Overall:

𝜃 ∧ 𝜌 ∧ ⋀𝑖 ∨𝑞∈𝐺𝑖 𝑞
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Arbiter

Arbiter

r1
r2
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g1
g2

gn

Client

ri gi
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Translate to LTL
• Variables:
ℐ = 𝑟1, 𝑟2
𝒪 = {𝑔1, 𝑔2}

• Initially:
¬𝑟1 ∧ ¬𝑟2 ∧ ¬𝑔1 ∧ ¬𝑔2

• Transition: 

(𝑟1∧ ¬𝑔1) → 𝑟1
¬𝑟1 ∧ 𝑔1 → ¬𝑟1
(𝑟2∧ ¬𝑔2) → 𝑟2
¬𝑟2 ∧ 𝑔2 → ¬𝑟2
¬𝑔1 ∨ ¬𝑔2
(𝑔1 ↔ 𝑟1) → 𝑔1 ↔ 𝑔1
(𝑔2↔ 𝑟2) → 𝑔2 ↔ 𝑔2

• Good things:
𝑔1 = 𝑟1 ∧ (𝑔2 = 𝑟2)

If requesting, stay until granted
Don’t reuse grants

Mutual exclusion
Don’t grant w.o. request
Don’t take away used grants
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Separate to Assumptions and Guarantees

Environment:
• Initially:
¬𝑟1 ∧ ¬𝑟2

• Transition: 

(𝑟1∧ ¬𝑔1) → 𝑟1 ∧

¬𝑟1 ∧ 𝑔1 → ¬𝑟1 ∧

(𝑟2∧ ¬𝑔2) → 𝑟2 ∧

¬𝑟2 ∧ 𝑔2 → ¬𝑟2

System:
• Initially:
¬𝑔1 ∧ ¬𝑔2

• Transition: 
¬𝑔1 ∨ ¬𝑔2 ∧

(𝑔1 ↔ 𝑟1) → 𝑔1 ↔ 𝑔1 ∧

(𝑔2↔ 𝑟2) → 𝑔2 ↔ 𝑔2
• Good things:

𝑔1 = 𝑟1 ∧ (𝑔2 = 𝑟2)
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The Goal for Synthesis

𝜃𝑒 ∧ 𝜌𝑒 → 𝜃𝑠 ∧ 𝜌𝑠 ∧ (∧𝑖 𝐺𝑖)
• This still does not look very simple …
• Can we do anything with the bits 𝜃𝑒, 𝜃𝑠, 𝜌𝑒, and 𝜌𝑠?
– 𝜃𝑠 can be used to restrict the initial moves of P0:

For every initial input there is initial output satisfying 𝜃𝑠 …
– 𝜌𝑠 can be used to restrict the transitions of P0.
– What if we use 𝜃𝑒 and 𝜌𝑒 to restrict the moves of P1?
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What’s left?

𝜃𝑒 ∧ 𝜌𝑒 → 𝜃𝑠 ∧ 𝜌𝑠 ∧ (∧𝑖 𝐺𝑖)
• This is slightly more complicated than response. We call it generalized Büchi.

Generalized Büchi:
1. fix (greatest := 𝑉)
2. foreach (𝐺𝑖)
3. fix (least := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest)
4. least := least ∨ 𝑐𝑝𝑟𝑒(least);
5. end // fix least
6. greatest := least;
7. end // foreach
8. end // fix greatest

Büchi:
1. fix (greatest := 𝑉)
2. fix (least := 𝐺 ∧ 𝑐𝑝𝑟𝑒(greatest)
3. least := least ∨ 𝑐𝑝𝑟𝑒(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest
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Proof (Generalized Büchi–Soundness)

• Suppose that greatest is not empty. For the fixpoint to 
terminate, for each 𝐺𝑖 the inner fixpoint starting from 
this value recomputes it.

• Let least0
𝑖 , least1

𝑖 , least2
𝑖 , … be the sequence of values 

that least has through the computation of this last 
iteration for 𝐺𝑖.

• Consider 𝑣 ∈ greatest. Let 𝑗0 be the index such that 

𝑣 ∈ least𝑗0
𝑖 . 

By definition of 𝑐𝑝𝑟𝑒(⋅), P0 can force a successor 𝑤 of 𝑣. But then, 𝑤 ∈ least𝑗1
𝑖 for 

some 𝑗1 < 𝑗0. This shows that P0 can ensure to reach least0
𝑖 = 𝐺0 ∧ 𝑐𝑝𝑟𝑒(greatest). 

So it ensures a visit 𝐺𝑖. 

• But now least0
𝑖 = 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest). 

So next P0 forces least𝑘
𝑖+1, for some 𝑘 and repeat this process.

• By induction, P0 can enforce ∧𝑖 𝐺𝑖.

Generalized Büchi:
1. fix (greatest := 𝑉)
2. foreach (𝐺𝑖)
3. fix (least := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest)
4. least := least ∨ 𝑐𝑝𝑟𝑒(least);
5. end // fix least
6. greatest := least;
7. end // foreach
8. end // fix greatest
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Proof (Control of Büchi - completeness)

If there is a strategy 𝑓 s.t. every play 
compliant with it wins ∧𝑖 𝐺𝑖.
Every node 𝑣 from which 𝑓 is winning 
remains in every approximation of the fixpoint greatest:
Consider some 𝐺𝑖. From 𝑣 there is a maximum on the length of 
paths to reach 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest) (König’s lemma). 
Prove by induction on the number of iterations in the first 
fixpoint that win⊆ greatest.
For greatest0 = 𝑉 this is clear.  Assume win⊆ greatesti. Then for 
every node 𝑣 ∈ win it must be that 𝑣 ∈ leastj for   the distance to 
reach 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(win).

Generalized Büchi:
1. fix (greatest := 𝑉)
2. foreach (𝐺𝑖)
3. fix (least := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatest)
4. least := least ∨ 𝑐𝑝𝑟𝑒(least);
5. end // fix least
6. greatest := least;
7. end // foreach
8. end // fix greatest
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Oops …

• The clients do not release the bus!
• It’s not only the system that has to do good things.
• The environment has to do good things as well!

• We need: ∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖
• We call this Generalized Reactivity (1) or GR(1).
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Solving GR(1) Games

Generalized Reactivity (1):
1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
4. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
5. foreach (𝐴𝑗)

6. fix (greatestX := 𝑉)
7. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

8. end // fix greatestX
9. leastY := leastY ∨ greatestX;
10. end // foreach 𝐴
11. end // fix leastY
12. greatestZ :=leastY;
13. end // foreach 𝐺
14. end // fix greatestZ
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Proof (Control of GR(1) –Soundness)
Suppose that greatestZ is not empty.  For each 𝐺𝑖 the inner 
fixpoint starting from greatestZ recomputes greatestZ.    

Let leastY0
𝑖 , leastY1

𝑖, leastY2
𝑖 , … be the sequence of values that leastY

has during the last iteration.  Each leastY𝑘
𝑖 is equal to the union of 

greatestX𝑘
𝑖,1, greatestX𝑘

𝑖,2, …, greatestX𝑘
𝑖,𝑚.

Consider 𝑣 ∈ greatestZ. Let 𝑘0 be the minimal index such that

𝑣 ∈ leastY𝑘0
𝑖 and let 𝑗0 be the minimal such that 𝑣 ∈ greatestX𝑘0

𝑖,𝑗0. 

By definition of 𝑐𝑝𝑟𝑒, P0 can control to reach in one move 

greatestX𝑘1
𝑖,𝑗1 such that either (A) 𝑘1 < 𝑘0 or (B) 𝑘1 = 𝑘0 and 𝑗1 = 𝑗0. 

In case (B), we know that 𝑣 ⊨ ¬𝐴𝑗0 . So by playing this strategy, P0

can ensure that either some 𝐴 is visited finitely often, or reach 

leastY0
𝑖 ∧ c𝑝𝑟𝑒(greatestZ).

By repeating the same for all 𝐺𝑖 P0 can enforce

∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖

1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
4. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
5. foreach (𝐴𝑗)

6. fix (greatestX := 𝑉)
7. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

8. end // fix greatestX
9. leastY := leastY ∨ greatestX;
10. end // foreach 𝐴
11. end // fix leastY
12. greatestZ :=leastY;
13. end // foreach 𝐺
14. end // fix greatestZ
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Proof (Control of GR(1) – completeness sketch)
If there is a strategy 𝑓 s.t. every play compliant with it wins

∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖
Every 𝑣 from which 𝑓 is winning remains in every 
approximation of the fixpoint greatestZ:
As before, consider some 𝐺𝑖. From 𝑣 there is a maximum on the 
number of visits to 𝐴𝑗 before arriving to 𝐺𝑖 ∧ c𝑝𝑟𝑒(win) (König’s 

lemma). 
Prove by induction on the number of iterations in the first 
fixpoint that win ⊆ greatestZ.
For greatestZ0 = 𝑉 this is clear.  Assume win ⊆ greatestZ𝑙. Then 

for every 𝑣 ∈ win it must be that 𝑣 ∈ leastY𝑘
𝑖 for some 𝑘. 

1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
4. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
5. foreach (𝐴𝑗)

6. fix (greatestX := 𝑉)
7. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

8. end // fix greatestX
9. leastY := leastY ∨ greatestX;
10. end // foreach 𝐴
11. end // fix leastY
12. greatestZ :=leastY;
13. end // foreach 𝐺
14. end // fix greatestZ
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Memorizing Intermediate Values

Generalized Reactivity (1):
1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. 𝑐𝑌:= 0;
4. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
5. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
6. foreach (𝐴𝑗)

7. fix (greatestX := 𝑉)
8. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

9. end // fix greatestX
10. 𝑥[𝐺𝑖][𝑐𝑌][𝐴𝑗] := greatestX;

11. leastY := leastY ∨ greatestX;
12. end // foreach 𝐴
13. 𝑦[𝐺𝑖][𝑐𝑌] := leastY;
14. 𝑐𝑌:= 𝑐𝑌 + 1;
15. end // fix leastY
16. greatestZ :=leastY;
17. end // foreach 𝐺
18. end // fix greatestZ
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Construct the Realizing Machine

𝜃𝑒 ∧ 𝜌𝑒 ∧ (∧𝑗 𝐴𝑗) → 𝜃𝑠 ∧ 𝜌𝑠 ∧ (∧𝑖 𝐺𝑖)

• Embed 𝜃𝑒, 𝜌𝑒, 𝜃𝑠, and 𝜌𝑠 into 𝐺 = 𝑉, 𝑉0, 𝑉1, 𝐸, 𝜑 , where 

𝜑 = ∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖
• Set let m = 𝐺𝑖 and n = 𝐴𝑖 .
• Construct a machine 𝑀 realizing 𝜑:
𝑀 = 2ℐ , 2𝒪 , 2ℐ∪𝒪 × 1. .𝑚 ∪ 𝑠0 , 𝜌, 𝑠0, 𝐿 :

𝜌 𝑠0, 𝑖 = ൜
𝜃𝑠 𝑖 ⊨ 𝜃𝑒
𝑇 𝑖 ⊨ ¬𝜃𝑒

𝜌 𝑖, 𝑜, 𝑙 , 𝑖′ =

(𝑖′, 𝑜′, 𝑙 ⊕ 1) 𝑖, 𝑜 ⊨ 𝐺𝑙 ∧ 𝑖′, 𝑜′ ∈ win

(𝑖′, 𝑜′, 𝑙) 𝑖, 𝑜 ∈ 𝑦[𝐺𝑙][𝑐𝑌] ∧ 𝑖′, 𝑜′ ∈ 𝑦[𝐺𝑙][ < 𝑐𝑌]

(𝑖′, 𝑜′, 𝑙)
𝑖, 𝑜 ⊨ ¬𝐴𝑗 ∧ 𝑖, 𝑜 ∈ x[𝐺𝑙][𝑐𝑌][𝐴𝑗] ∧

𝑖′, 𝑜′ ∈ 𝑦[𝐺𝑙][ ≤ 𝑐𝑌][ ≤ 𝐴𝑗 ]
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Optimizing Symbolic Runtime

Generalized Reactivity (1):
1. fix (greatestZ := 𝑉)
2. foreach (𝐺𝑖)
3. 𝑐𝑌:= 0;
4. fix (leastY := 𝐺𝑖 ∧ 𝑐𝑝𝑟𝑒(greatestZ))
5. leastY := leastY ∨ 𝑐𝑝𝑟𝑒(leastY);
6. foreach (𝐴𝑗)

7. fix (greatestX :=𝑦[𝐺𝑖][𝑚𝑎𝑥𝑝𝑟𝑒𝑣])
8. greatestX := least ∨ (¬𝐴𝑗 ∧ 𝑐𝑝𝑟𝑒(greatestX))

9. end // fix greatestX
10. 𝑥[𝐺𝑖][𝑐𝑌][𝐴𝑗] := greatestX;

11. leastY := leastY ∨ greatestX;
12. end // foreach 𝐴
13. 𝑦[𝐺𝑖][𝑐𝑌] := leastY;
14. 𝑐𝑌:= 𝑐𝑌 + 1;
15. end // fix leastY
16. greatestZ :=leastY;
17. end // foreach 𝐺
18. end // fix greatestZ
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Back to the Arbiter

Environment:
• Initially:
¬𝑟1 ∧ ¬𝑟2

• Transition: 

(𝑟1∧ ¬𝑔1) → 𝑟1 ∧

¬𝑟1 ∧ 𝑔1 → ¬𝑟1 ∧

(𝑟2∧ ¬𝑔2) → 𝑟2 ∧

¬𝑟2 ∧ 𝑔2 → ¬𝑟2
• Good things:

¬𝑟1 ∨ ¬𝑔1 ∧ (¬𝑟2 ∨ ¬𝑔2)

System:
• Initially:
¬𝑔1 ∧ ¬𝑔2

• Transition: 
¬𝑔1 ∨ ¬𝑔2 ∧

(𝑔1 ↔ 𝑟1) → 𝑔1 ↔ 𝑔1 ∧

(𝑔2↔ 𝑟2) → 𝑔2 ↔ 𝑔2
• Good things:

𝑔1 = 𝑟1 ∧ (𝑔2 = 𝑟2)
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Result of Synthesis

r1:0,r2:0,g1:0,g2:0 r1:0,r2:1,g1:0,g2:0 r1:0,r2:1,g1:0,g2:1 r1:0,r2:0,g1:0,g2:1

r1:1,r2:0,g1:0,g2:0 r1:1,r2:1,g1:0,g2:0 r1:1,r2:1,g1:0,g2:0 r1:1,r2:1,g1:0,g2:1 r1:1,r2:0,g1:0,g2:1

r1:1,r2:0,g1:1,g2:0 r1:1,r2:1,g1:1,g2:0

r1:0,r2:0,g1:1,g2:0 r1:0,r2:1,g1:1,g2:0

r1:0,r2:0,g1:0,g2:0
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But why do you embed safety?

• We started from:

𝜃𝑒 ∧ 𝜌𝑒 ∧ (∧𝑗 𝐴𝑗) → 𝜃𝑠 ∧ 𝜌𝑠 ∧ (∧𝑖 𝐺𝑖)

• And ended up with:

∧𝑗 𝐴𝑗 → ∧𝑖 𝐺𝑖
with some modifications to permitted moves in 2ℐ∪𝒪.

• Are the two the same?
• No!
• What’s the difference?
– Realizability in our game implies realizability of the general 

formula.
– Other direction is not true.
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Some applications
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../Movies/sim_multi_run_5_320X360_world.avi
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movies/sim_multi_run_5_320X360_world.avi
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file://localhost/Users/np183/Verif/prof/fsim/synthesis/presentation/Movies/sim4.avi
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movies/sim4.avi
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Realizable

Unrealizable

Hybrid Controller

FSM
Specification

Synthesis   

Specification Analysis

Physical Robot
Simulation

Robotics Approach Overview
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file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/ISRR19_0049_VD_fi.mp4
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file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/RALEvBasedSTL.mp4
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/RAL2022EvSTL_Short.mp4
file:///C:/localdata/Verif/prof/fsim/synthesis/presentation/Movep22/Hadas/Videos/PhysVideo.mp4
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Iterator-Based Temporal Logic Task Planning
Sebastián A. Zudaire; Martin Garrett; Sebastián Uchitel
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Distributed Synthesis

• We want to co-synthesize controllers that will control different variables and 
collaborate.

• An architecture 𝐴 = (𝑃, 𝑒, 𝒱, 𝐼, 𝑂), where:
– 𝑃 is a set of processes.
– 𝑒 ∈ 𝑃 the environment.
– 𝒱 set of (Boolean) variables.
– 𝐼: 𝑃 → 2𝒱 input connectivity function.
– 𝑂: 𝑃 → 2𝒱 output connectivity function.
∀𝑝1, 𝑝2. 𝑂 𝑝1 ∩ 𝑂 𝑝2 = ∅
𝒱 =∪𝑝∈𝑃 𝑂(𝑝)

• An implementation for 𝑝 ∈ 𝑃 is 2𝐼 𝑝
+
→ 2𝑂 𝑝 .

As before, we would like to replace 2𝐼 𝑝
+

by some (finite) domain 𝐷𝑝.

• Given implementations {𝑇𝑝}𝑝∈𝑃 for all processes, their composition ∥𝑝 𝑇𝑝 includes all 

possible matching interactions.
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The Synthesis Problem

• Given an architecture 𝐴 = (𝑃, 𝑒, 𝒱, 𝐼, 𝑂) and a specification 𝜑 over 𝒱, do there exists 
implementations {𝑇𝑝}𝑝∈𝑃 such that ∥𝑝 𝑇𝑝 satisfies 𝜑?

• In general the problem is undecidable.
– It is enough to have an architecture with two processes with separate inputs.

– If the architecture contains an information fork, synthesis for it is undecidable. 
• Some architectures are possible:

But complexity is non-elementary.

e

p1 p2
g1 g2

r2r1

e p1 p2 pn



Lecture 5: Current Research Directions N. Piterman

Reactive Synthesis, MOVEP Summer School, Aalborg, 2022 184

What are my options?

• Bounded synthesis:
– Use the bounded synthesis for each process separately.
– Synthesize all the processes together.

• Construct dominant strategies inductively:
– For a process construct a dominant strategy for the full specification.
– Extract from the dominant strategy the assumptions for other processes.
– Synthesize a dominant strategy for specification and new assumptions for all 

others.
• Use Zielonka/Asynchronous Automata.
– Communication by synchronous message passing (blocking multicast).
– More architectures are decidable.
– Sending of Full information leads to algorithmic distribution.
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Safety of Learned Behaviour

• Use formal specifications at learning and at runtime:
– Shield synthesis – create controllers that accompany a learner and restrict attention 

to safe actions.
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Strategic Reasoning

• Using games and reasoning about strategies for designing multi-agent systems.
• Connections to algorithmic game theory.
• Logics, games, equilibria, …
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Concurrent Game Structures

• A concurrent game structure 𝐺 = ⟨𝐴𝑃, 𝐴𝑔, 𝐴𝑐, 𝑆𝑡, 𝜆, 𝜏, 𝑠0⟩:
– 𝐴𝑃 – atomic set of propositions.
– 𝐴𝑔 – set of agents.
– 𝐴𝑐 – set of actions.
– 𝑆𝑡 – set of states.
– 𝜆: 𝑆𝑡 → 2𝐴𝑃 - labeling function.
– 𝜏: 𝑆𝑡 × 𝐴𝑐𝐴𝑔 → 𝑆𝑡 – transition function.

• History / track: 𝜌 ∈ 𝑆𝑡∗.
• Strategy: 𝑓: 𝑆𝑡∗ → 𝐴𝑐.

• Strategy profile: 𝑓𝑎𝑔 𝑎𝑔∈𝐴𝑔
.

• A strategy profile defines exactly one infinite run. 
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Logics and Equilibria

• Alternating Temporal Logic – quantify existentially and universally about abilities of 
coalitions.

𝑋 𝑃
• Strategy logic – quantify existentially and universally about individual strategies.

∃𝑥1, 𝑥2∀𝑥3, 𝑥4 𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4
∃𝑥1, 𝑥2∀𝑥3, 𝑥4 𝑃 𝑥1, 𝑥2) ∧ 𝑄1 𝑥1, 𝑥4 ∧ 𝑄2 (𝑥2, 𝑥3

• Nash equilibrium – a strategy profile such that if a player deviates, other players can 
join forces to punish them.

• Subgame perfect equilibrium – a strategy profile that is optimal from every location 
in the game.
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Rationality

• What does it mean for an agent to be rational?
• Nash equilibrium in Boolean context?
• Rational synthesis …
• Dominant strategies …
• Good-enough synthesis …
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Related Work / Open Problems

• Other determinization [Křetínský, Esparza, …].
• History Determinization (GFG) [HP06, Boker, Lehtinen, …]
• Partial information [Chatterjee, Doyen, Raskin, …].
• Stochastic elements [Chatterjee, Kucera, …].
• Real time [Alur, Maler, Larsen, …].
• Quantitative Objectives [Henzinger, Kupferman, Raskin, …].
• Distributed Synthesis [Muschol, Finkbeiner, Raskin, Walukiewicz, …].
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Summary

• Theoretical solution well known since 1969/1989.
• Still provides motivation for a lot of theoretical and practical work.
• In theory, theory and practice are the same.
• Thank you.
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