First-Order Theorem Proving and Vampire

Laura Kovács

for(syte) III Informatics

Outline

Equality

Term Orderings

Non-Ground Case, Lifting

From Theory to Practice

Putting All Together, Summary

First-order logic with equality

- ► Equality predicate: =.
- ightharpoonup Equality: l = r.

The order of literals in equalities does not matter, that is, we consider an equality l = r as a multiset consisting of two terms l, r, and so consider l = r and r = l equal.

Equality. An Axiomatisation

- reflexivity axiom: x = x;
- **symmetry** axiom: $x = y \rightarrow y = x$;
- ▶ transitivity axiom: $x = y \land y = z \rightarrow x = z$;
- ▶ function substitution (congruence) axioms: $x_1 = y_1 \land ... \land x_n = y_n \rightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n)$, for every function symbol f;
- ▶ predicate substitution (congruence) axioms: $x_1 = y_1 \land \ldots \land x_n = y_n \land P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)$ for every predicate symbol P.

Inference systems for logic with equality

We will next introduce a resolution and superposition inference system. This system is complete. One can eliminate redundancy.

Inference systems for logic with equality

We will next introduce a resolution and superposition inference system. This system is complete. One can eliminate redundancy.

- Completeness is first established for ground clauses only.
- This can be "lifted" to arbitrary first-order clauses using a technique called lifting.
- Some notions (ordering, selection function) can first be defined for ground clauses and then "lift" them to non-ground clauses.

Inference systems for logic with equality

We will next introduce a resolution and superposition inference system. This system is complete. One can eliminate redundancy.

- Completeness is first established for ground clauses only.
- This can be "lifted" to arbitrary first-order clauses using a technique called lifting.
- Some notions (ordering, selection function) can first be defined for ground clauses and then "lift" them to non-ground clauses.

Simple Ground Superposition Inference System

Superposition: (right and left)

$$\frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{s[I]} = \textit{t} \lor \textit{D}}{\textit{s[r]} = \textit{t} \lor \textit{C} \lor \textit{D}} \text{ (Sup)}, \quad \frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{s[I]} \neq \textit{t} \lor \textit{D}}{\textit{s[r]} \neq \textit{t} \lor \textit{C} \lor \textit{D}} \text{ (Sup)},$$

Simple Ground Superposition Inference System

Superposition: (right and left)

$$\frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{s[I]} = \textit{t} \lor \textit{D}}{\textit{s[r]} = \textit{t} \lor \textit{C} \lor \textit{D}} \text{ (Sup)}, \quad \frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{s[I]} \neq \textit{t} \lor \textit{D}}{\textit{s[r]} \neq \textit{t} \lor \textit{C} \lor \textit{D}} \text{ (Sup)},$$

Equality Resolution:

$$\frac{\mathbf{s} \neq \mathbf{s} \vee C}{C} \text{ (ER)},$$

Equality Factoring:

$$\frac{s = t \lor s = t' \lor C}{s = t \lor t \neq t' \lor C}$$
(EF),

$$f(a) = a \lor g(a) = a$$

 $f(f(a)) = a \lor g(g(a)) \ne a$
 $f(f(a)) \ne a$

$$f(a) = a \lor g(a) = a$$

 $f(f(a)) = a \lor g(g(a)) \ne a$
 $f(f(a)) \ne a$

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause f(a) = a we can derive any clause of the form

$$f^m(a) = f^n(a)$$

where $m, n \geq 0$.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause f(a) = a we can derive any clause of the form

$$f^m(a) = f^n(a)$$

where $m, n \geq 0$.

Worst of all, the derived clauses can be much larger than the original clause f(a) = a.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause f(a) = a we can derive any clause of the form

$$f^m(a) = f^n(a)$$

where $m, n \geq 0$.

Worst of all, the derived clauses can be much larger than the original clause f(a) = a.

The recipe is to use the previously introduced ingredients:

- 1. Ordering;
- 2. Literal selection:
- 3. Redundancy elimination.

Atom and literal orderings on equalities

Equality atom comparison treats an equality s = t as the multiset $\{s, t\}$.

$$(s' = t') \succ_{lit} (s = t) \text{ if } \dot{s}', t'\dot{s} \succ \dot{s}, t\dot{s}$$

$$\triangleright (s' \neq t') \succ_{\mathit{lit}} (s \neq t) \text{ if } \dot{\{s',t'\}} \succ \dot{\{s,t\}}$$

with \succ_{lit} being an induced ordering on literals (as in session 2).

Ground Superposition Inference System $\operatorname{Sup}_{\succ,\sigma}$

Let σ be a well-behaved literal selection function.

Superposition: (right and left)

$$\frac{\underline{I=r} \lor C \quad \underline{s[I]=t} \lor D}{s[r]=t \lor C \lor D} \text{ (Sup)}, \quad \frac{\underline{I=r} \lor C \quad \underline{s[I] \ne t} \lor D}{s[r] \ne t \lor C \lor D} \text{ (Sup)},$$

where (i)
$$I \succ r$$
, (ii) $s[I] \succ t$

Ground Superposition Inference System $Sup_{\succ,\sigma}$

Let σ be a well-behaved literal selection function.

Superposition: (right and left)

$$\frac{\underline{l=r} \lor C \quad \underline{s[l]=t} \lor D}{s[r]=t \lor C \lor D} \text{ (Sup)}, \quad \frac{\underline{l=r} \lor C \quad \underline{s[l] \ne t} \lor D}{s[r]\ne t \lor C \lor D} \text{ (Sup)},$$

where (i) $l \succ r$, (ii) $s[I] \succ t$, (iii) l = r is strictly greater than any literal in C, (iv) (only for the superposition-right rule) s[I] = t is greater than or equal to any literal in D.

Ground Superposition Inference System $Sup_{\succ,\sigma}$

Let σ be a well-behaved literal selection function.

Superposition: (right and left)

$$\frac{\underline{l=r} \lor C \quad \underline{s[l]=t} \lor D}{s[r]=t \lor C \lor D} \text{ (Sup)}, \quad \frac{\underline{l=r} \lor C \quad \underline{s[l] \ne t} \lor D}{s[r] \ne t \lor C \lor D} \text{ (Sup)},$$

where (i) $l \succ r$, (ii) $s[l] \succ t$, (iii) l = r is strictly greater than any literal in C, (iv) (only for the superposition-right rule) s[l] = t is greater than or equal to any literal in D.

Equality Resolution:

$$\frac{\underline{s \neq s} \vee C}{C} \text{ (ER)},$$

Equality Factoring:

$$\frac{\mathbf{s} = \mathbf{t} \lor \mathbf{s} = \mathbf{t}' \lor \mathbf{C}}{\mathbf{s} = \mathbf{t} \lor \mathbf{t} \neq \mathbf{t}' \lor \mathbf{C}}$$
 (EF),

where (i) $s \succ t \succeq t'$; (ii) s = t is greater than or equal to any literal in C.

Outline

Equality

Term Orderings

Non-Ground Case, Lifting

From Theory to Practice

Putting All Together, Summary

Simplification Ordering

When we deal with equality, we need to work with term orderings.

Simplification Ordering

When we deal with equality, we need to work with term orderings.

Simplification Ordering

When we deal with equality, we need to work with term orderings. Consider a strict ordering \succ on signature symbols, such that \succ is well-founded.

The ordering ≻ on terms is called a simplification ordering if

- 1. \succ is well-founded;
- 2. \succ is monotonic: if $l \succ r$, then $s[l] \succ s[r]$;
- 3. \succ is stable under substitutions: if $l \succ r$, then $l\theta \succ r\theta$.

A General Property of Term Orderings

If \succ is a simplification ordering, then for every term t[s] and its proper subterm s we have $s \not\succ t[s]$.

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n)\succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if

Let us fix

- Signature Σ, it induces the term algebra TA(Σ).
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n)\succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if
1. $|g(t_1,\ldots,t_n)|>|h(s_1,\ldots,s_m)|$ (by weight) or

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n)\succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if

- 1. $|g(t_1,...,t_n)| > |h(s_1,...,s_m)|$ (by weight) or
- 2. $|g(t_1,...,t_n)| = |h(s_1,...,s_m)|$ and one of the following holds: 2.1 $g \gg h$ (by precedence) or

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1, ..., t_n) \succ_{KB} h(s_1, ..., s_m)$$
 if
1. $|g(t_1, ..., t_n)| > |h(s_1, ..., s_m)|$
(by weight) or
2. $|g(t_1, ..., t_n)| = |h(s_1, ..., s_m)|$

2.
$$|g(t_1, ..., t_n)| = |h(s_1, ..., s_m)|$$
 and one of the following holds:
2.1 $g \gg h$ (by precedence) or
2.2 $g = h$ and for some
 $1 \le i \le n$ we have
 $t_1 = s_1, ..., t_{i-1} = s_{i-1}$ and
 $t_i \succ_{KB} s_i$ (lexicographically).

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$|f(g(a), f(a, b))| = |3(0(1), 3(1, 2))|$$

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$|f(g(a), f(a, b))| = |3(0(1), 3(1, 2))| = 3 + 0 + 1 + 3 + 1 + 2$$

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$|f(g(a), f(a, b))| = |3(0(1), 3(1, 2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.$$

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$|f(g(a), f(a, b))| = |3(0(1), 3(1, 2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.$$

The Knuth-Bendix ordering is the main ordering used in Vampire and all other resolution and superposition theorem provers.

Weight Functions, Ground Case

A weight function $w : \Sigma \to \mathbb{N}$ is any function satisfying:

- ▶ w(a) > 0 for any constant $a \in \Sigma$;
- ▶ if w(f) = 0 for a unary function f ∈ Σ, then f ≫ g for all functions g ∈ Σ with f ≠ g. That is, f is the greatest element of Σ wrt ≫.

As a consequence, there is at most one unary function f with w(f) = 0.

Another case of redundancy

Consider a superposition with a unit left premise:

$$\frac{\underline{I=r}}{s[r]=t\vee D} \text{ (Sup)},$$

Note that we have

$$I = r, s[r] = t \lor D \models s[I] = t \lor D$$

Another case of redundancy

Consider a superposition with a unit left premise:

$$\frac{\underline{I=r} \quad \underline{s[I]=t \lor D}}{s[r]=t \lor D} \text{ (Sup)},$$

Note that we have

$$I = r, s[r] = t \lor D \models s[I] = t \lor D$$

and we have

$$s[I] = t \lor D \succ s[r] = t \lor D.$$

Another case of redundancy

Consider a superposition with a unit left premise:

$$\frac{\underline{I=r} \quad \underline{s[I]=t \lor D}}{\underline{s[r]=t \lor D}} \text{ (Sup)},$$

Note that we have

$$I = r, s[r] = t \lor D \models s[I] = t \lor D$$

and we have

$$s[I] = t \lor D \succ s[r] = t \lor D.$$

If we also have $s[I] = t \lor D \succ I = r$, then the second premise is redundant and can be removed.

Another case of redundancy

Consider a superposition with a unit left premise:

$$\frac{\underline{I=r}}{s[r]=t\vee D} \text{ (Sup)},$$

Note that we have

$$I = r, s[r] = t \lor D \models s[I] = t \lor D$$

and we have

$$s[I] = t \lor D \succ s[r] = t \lor D.$$

If we also have $s[I] = t \lor D \succ I = r$, then the second premise is redundant and can be removed.

This rule (superposition plus deletion) is sometimes called demodulation (also rewriting by unit equalities).

Exercise - Ground Superposition-Based Theorem Proving

Consider the KBO ordering > generated by:

- the precedence $f \gg a \gg b \gg c$; and
- the weight function w with w(f) = w(a) = w(b) = w(c) = 1.

Consider the set *S* of ground formulas:

$$a = b \lor a = c$$

 $f(a) \neq f(b)$
 $b = c$

Apply saturation on S using an inference process based on the ground superposition calculus $\sup_{\succ,\sigma}$ (including the inference rules of ground binary resolution with selection).

Exercise - Ground Superposition-Based Theorem Proving

Consider the KBO ordering > generated by:

- the precedence $f \gg a \gg b \gg c$; and
- the weight function w with w(f) = w(a) = w(b) = w(c) = 1.

Consider the set *S* of ground formulas:

$$a = b \lor a = c$$

 $f(a) \neq f(b)$
 $b = c$

Apply saturation on S using an inference process based on the ground superposition calculus $\sup_{\succ,\sigma}$ (including the inference rules of ground binary resolution with selection).

Exercise - Ground Superposition-Based Theorem Proving

Consider the KBO ordering > generated by:

- the precedence $f \gg a \gg b \gg c$; and
- the weight function w with w(f) = w(a) = w(b) = w(c) = 1.

Consider the set *S* of ground formulas:

$$a = b \lor a = c$$

 $f(a) \neq f(b)$
 $b = c$

Apply saturation on S using an inference process based on the ground superposition calculus $\sup_{\succ,\sigma}$ (including the inference rules of ground binary resolution with selection).

Challenge: Show that *S* is unsatisfiable such that during saturation only 4 new clauses are generated.

Outline

Equality

Term Orderings

Non-Ground Case, Lifting

From Theory to Practice

Putting All Together, Summary

Lifting

Lifting is a technique for proving completeness theorems in the following way:

- 1. Prove completeness of the system for a set of ground clauses;
- 2. Lift the proof to the non-ground case.

Lifting, Example

Consider two (non-ground) clauses $p(x, a) \lor q_1(x)$ and $\neg p(y, z) \lor q_2(y, z)$. If the signature contains function symbols, then both clauses have infinite sets of instances:

$$\{ p(r,a) \lor q_1(r) \mid r \text{ is ground} \}$$

$$\{ \neg p(s,t) \lor q_2(s,t) \mid s,t \text{ are ground} \}$$

We can resolve such instances if and only if r = s and t = a. Then we can apply the following inference

$$\frac{p(s,a) \vee q_1(s) \quad \neg p(s,a) \vee q_2(s,a)}{q_1(s) \vee q_2(s,a)} \text{ (BR)}$$

But there is an infinite number of such inferences.

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the form

$$\frac{p(s,a) \vee q_1(s) \quad \neg p(s,a) \vee q_2(s,a)}{q_1(s) \vee q_2(s,a)} \text{ (BR)}$$

by a single non-ground inference

$$\frac{p(x,a)\vee q_1(x) \quad \neg p(y,z)\vee q_2(y,z)}{q_1(y)\vee q_2(y,a)} \text{ (BR)}$$

Is this always possible?

Yes!

$$\frac{p(x,a)\vee q_1(x) \quad \neg p(y,z)\vee q_2(y,z)}{q_1(y)\vee q_2(y,a)} \; (\mathsf{BR})$$

Note that the substitution $\{x \mapsto y, z \mapsto a\}$ is a solution of the "equation" p(x, a) = p(y, z).

Lifting (Robinson, 1965)

Lifting Lemma for BR in \mathbb{BR} :

Let C and D clauses with no shared variables. If:

Lifting (Robinson, 1965)

Lifting Lemma for BR in \mathbb{BR} :

Let C and D clauses with no shared variables. If:

$$\begin{array}{ccc} C & D \\ \downarrow \sigma_1 & \downarrow \sigma_2 \\ \hline C\sigma_1 & D\sigma_2 \\ \hline C' & \end{array} \ (\textit{ground BR})$$

then there exists an substitution σ sucht that:

$$\frac{C \quad D}{C''} \quad (non - ground BR)$$

$$\downarrow \sigma$$

$$C' = C'' \sigma$$

 σ is a most general unifier (mgu) of C, D.

Lifting (Robinson, 1965)(Bachmair & Ganzinger, 1990)

Lifting Lemma for BR in \mathbb{BR} :

Let C and D clauses with no shared variables. If:

$$egin{array}{ccc} C & D & & & & \\ \downarrow \sigma_1 & \downarrow \sigma_2 & & & \\ \hline C\sigma_1 & D\sigma_2 & & & \\ \hline C' & & & & \end{array}$$
 (ground BR)

then there exists an substitution σ such that:

$$\frac{C \quad D}{C''} \quad (non - ground BR)$$

$$\downarrow \sigma$$

$$C' = C'' \sigma$$

Lifting: ground inferences of $\mathbb{BR}_{\succ,\sigma}$, $\mathbb{S}up_{\succ,\sigma}$, orderings \succ , selection functions σ

Non-Ground Superposition, Lifting

Superposition:

$$\frac{\underline{l=r}\vee C \quad \underline{s[l']=t}\vee D}{(s[r]=t\vee C\vee D)\theta} \text{ (Sup)}, \quad \frac{\underline{l=r}\vee C \quad \underline{s[l']\neq t}\vee D}{(s[r]\neq t\vee C\vee D)\theta} \text{ (Sup)},$$

where

- 1. θ is an mgu of I and I';
- 2. / is not a variable;
- 3. $r\theta \succeq l\theta$;
- 4. $t\theta \succeq s[l']\theta$.

Non-Ground Superposition, Lifting

Superposition:

$$\frac{\underline{l=r} \lor C \quad \underline{s[l']=t} \lor D}{(s[r]=t \lor C \lor D)\theta} \text{ (Sup)}, \quad \frac{\underline{l=r} \lor C \quad \underline{s[l'] \neq t} \lor D}{(s[r] \neq t \lor C \lor D)\theta} \text{ (Sup)},$$

where

- 1. θ is an mgu of I and I';
- 2. / is not a variable;
- 3. $r\theta \not\succeq l\theta$;
- 4. $t\theta \not\succeq s[I']\theta$.

Observations:

- ordering is partial, hence conditions like $r\theta \succeq l\theta$;
- these conditions must be checked a posteriori, that is, after the rule has been applied.

Note, however, that l > r implies $l\theta > r\theta$, so checking orderings a priory helps.

More rules

Equality Resolution:

$$\frac{\mathbf{s} \neq \mathbf{s}' \vee C}{C\theta} \text{ (ER)},$$

where θ is an mgu of s and s'. Equality Factoring:

$$\frac{\underline{I = r} \vee I' = r' \vee C}{(I = r \vee r \neq r' \vee C)\theta} \text{ (EF)},$$

where θ is an mgu of l and l', $r\theta \succeq l\theta$, $r'\theta \succeq l\theta$, and $r'\theta \succeq r\theta$.

Outline

Equality

Term Orderings

Non-Ground Case, Lifting

From Theory to Practice

Putting All Together, Summary

From theory to practice

- Preprocessing and CNF transformation;
- Superposition system;
- Orderings;
- Selection functions;
- Fairness (saturation algorithms);
- ► Redundancy.

Vampire's preprocessing (incomplete list)

- 1. (Optional) Select a relevant subset of formulas.
- 2. (Optional) Add theory axioms;
- 3. Rectify the formula.
- 4. If the formula contains any occurrence of \top or \bot , simplify the formula.
- 5. Remove if-then-else and let-in connectives.
- 6. Apply pure predicate elimination.
- 7. (Optional) Remove unused predicate definitions.
- 8. Convert the formula into equivalence negation normal form (ENNF).
- 9. Use a naming technique to replace some subformulas by their names.
- 10. Convert the formula into negation normal form (NNF).
- 11. Skolemize the formula.
- 12. (Optional) Replace equality axioms.
- Determine a literal ordering to be used.
- 14. Transform the formula into its clausal normal form.
- 15. Remove tautologies.
- 16. Pure literal elimination.

How to Design a Good Saturation Algorithm?

A saturation algorithm must be fair: every possible generating inference must eventually be selected.

Two main implementation principles:

apply simplifying inferences eagerly; apply generating inferences lazily.

checking for simplifying inferences should pay off; so it must be cheap.

How to Design a Good Saturation Algorithm?

A saturation algorithm must be fair: every possible generating inference must eventually be selected.

Two main implementation principles:

apply simplifying inferences eagerly; apply generating inferences lazily. checking for simplifying inferences should pay off; so it must be cheap.

Try: ./vampire -fsr off -awr 4:1 GRP140-1.p

Outline

Equality

Term Orderings

Non-Ground Case, Lifting

From Theory to Practice

Putting All Together, Summary

Revisit the group theory example of session 1

./vampire -stat full group.tptp