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Outline

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy



Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.
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Derivation, Proof

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .

I Proof of E : a finite derivation whose leaves are axioms.



Arbitrary First-Order Formulas

I A first-order signature (vocabulary): function symbols (including
constants), predicate symbols. Equality is part of the language.

I A set of variables.
I Terms are buit using variables and function symbols. For

example, f (x) + g(x).
I Atoms, or atomic formulas are obtained by applying a predicate

symbol to a sequence of terms. For example, p(a, x) or
f (x) + g(x) ≥ 2.

I Formulas: built from atoms using logical connectives ¬, ∧, ∨,→,
↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x .



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.

I Empty clause, denoted by �: clause with 0 literals, that is, when
n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I From now onwards: We only consider clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).
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Binary Resolution Inference System

The binary resolution inference system, denoted by BR is an
inference system on propositional clauses (or ground clauses).
It consists of two inference rules:
I Binary resolution, denoted by BR:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).



Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.
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Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.



Can this be used for checking (un)satisfiability

1. What happens when � cannot be derived from S?

2. How can one search for possible derivations of �?



Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

2. We have to formalize search for derivations.
However, before doing this we will introduce a slightly more refined
inference system.
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Selection Function

A literal selection function selects literals in a clause.
I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.
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Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:
I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C
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Completeness?

Binary resolution with selection may be incomplete.

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

However, any inference with selection applied to set of clauses
(1)− (7) give either a clause in this set, or a clause containing a
clause in this set.

For example, (8) cannot be derived from (1)− (7) with selection.
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Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:
I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.
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Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if
I either a negative literal is selected,

or all maximal literals (w.r.t. �) must be selected in C.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).
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Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:
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A well-behave selection function
must satisfy:

1. r � q, because of (1)
2. q � p, because of (2)
3. p � r , because of (6)

There is no ordering that satisfies
these conditions.
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How to Establish Unsatisfiability?

Completeness is formulated in terms of derivability of the empty
clause � from a set S0 of clauses in an inference system I. However,
this formulations gives no hint on how to search for such a derivation.

Idea:
I Take a set of clauses S (the search space), initially S = S0.

Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

If an inference in I can be applied, eventually it has to be applied
(fairness)

.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.
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How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.
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search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithm

A saturation algorithm tries to saturate a set of clauses with respect to
a given inference system.
In theory there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run forever, but without generating �. In this case
the input set of clauses is satisfiable.



Saturation Algorithm in Practice

In practice there are three possible scenarios:
1. At some moment the empty clause � is generated, in this case

the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run until we run out of resources, but without
generating �. In this case it is unknown whether the input set is
unsatisfiable.



Outline

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6= b ∨ b 6= c ∨ f (c, c) = f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.
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Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.
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Bag Extension of an Ordering

Bag = finite multiset.
Let > be any (strict) ordering on a set X . The bag extension of > is a
binary relation >bag , on bags over X , defined as the smallest
transitive relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.

Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .
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Clause Orderings

From now on consider clauses also as bags of literals. Note:
I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence
I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.
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Redundancy

A clause C ∈ S is called redundant in S if it is a logical consequence
of clauses in S strictly smaller than C.



Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.

We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.
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Redundant Clauses Can be Removed

In BRσ (and in the superposition calculus considered later) redundant
clauses can be removed from the search space.



Saturation with Redundancy

Let I be an inference system. Consider a saturation process with two
kinds of step Si ⇒ Si+1:

1. Adding the conclusion of an I-inference with premises in Si .

[generating inference]

2. Deletion of a clause redundant in Si , that is

Si+1 = Si − {C},

where C is redundant in Si .

[simplifying inference]
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