
First-Order Theorem Proving and Vampire

Laura Kovács



Outline

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy



Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.



Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.



Derivation, Proof

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .

I Proof of E : a finite derivation whose leaves are axioms.



Arbitrary First-Order Formulas

I A first-order signature (vocabulary): function symbols (including
constants), predicate symbols. Equality is part of the language.

I A set of variables.
I Terms are buit using variables and function symbols. For

example, f (x) + g(x).
I Atoms, or atomic formulas are obtained by applying a predicate

symbol to a sequence of terms. For example, p(a, x) or
f (x) + g(x) ≥ 2.

I Formulas: built from atoms using logical connectives ¬, ∧, ∨,→,
↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x .



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.

I Empty clause, denoted by �: clause with 0 literals, that is, when
n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I From now onwards: We only consider clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I From now onwards: We only consider clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.

I From now onwards: We only consider clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.

I From now onwards: We only consider clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.

I From now onwards: We only consider clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).



Binary Resolution Inference System

The binary resolution inference system, denoted by BR is an
inference system on propositional clauses (or ground clauses).
It consists of two inference rules:
I Binary resolution, denoted by BR:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).



Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.



Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.



Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.



Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.



Can this be used for checking (un)satisfiability

1. What happens when � cannot be derived from S?

2. How can one search for possible derivations of �?



Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

2. We have to formalize search for derivations.
However, before doing this we will introduce a slightly more refined
inference system.



Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

2. We have to formalize search for derivations.
However, before doing this we will introduce a slightly more refined
inference system.



Outline

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy



Selection Function

A literal selection function selects literals in a clause.
I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.



Selection Function

A literal selection function selects literals in a clause.
I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.



Selection Function

A literal selection function selects literals in a clause.
I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.



Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:
I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).



Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:
I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).



Completeness?

Binary resolution with selection may be incomplete.

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

However, any inference with selection applied to set of clauses
(1)− (7) give either a clause in this set, or a clause containing a
clause in this set.

For example, (8) cannot be derived from (1)− (7) with selection.



Completeness?

Binary resolution with selection may be incomplete.

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

However, any inference with selection applied to set of clauses
(1)− (7) give either a clause in this set, or a clause containing a
clause in this set.

For example, (8) cannot be derived from (1)− (7) with selection.



Completeness?

Binary resolution with selection may be incomplete.

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

However, any inference with selection applied to set of clauses
(1)− (7) give either a clause in this set, or a clause containing a
clause in this set.

For example, (8) cannot be derived from (1)− (7) with selection.



Completeness?

Binary resolution with selection may be incomplete.

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

However, any inference with selection applied to set of clauses
(1)− (7) give either a clause in this set, or a clause containing a
clause in this set.

For example, (8) cannot be derived from (1)− (7) with selection.



Completeness?

Binary resolution with selection may be incomplete.

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

However, any inference with selection applied to set of clauses
(1)− (7) give either a clause in this set, or a clause containing a
clause in this set.

For example, (8) cannot be derived from (1)− (7) with selection.



Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:
I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.



Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:
I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.



Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:
I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.



Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if
I either a negative literal is selected,

or all maximal literals (w.r.t. �) must be selected in C.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).



Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if
I either a negative literal is selected,

or all maximal literals (w.r.t. �) must be selected in C.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).



Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)
2. q � p, because of (2)
3. p � r , because of (6)

There is no ordering that satisfies
these conditions.



Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)
2. q � p, because of (2)
3. p � r , because of (6)

There is no ordering that satisfies
these conditions.



Outline

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy



How to Establish Unsatisfiability?

Completeness is formulated in terms of derivability of the empty
clause � from a set S0 of clauses in an inference system I. However,
this formulations gives no hint on how to search for such a derivation.

Idea:
I Take a set of clauses S (the search space), initially S = S0.

Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

If an inference in I can be applied, eventually it has to be applied
(fairness)

.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Unsatisfiability?

Completeness is formulated in terms of derivability of the empty
clause � from a set S0 of clauses in an inference system I. However,
this formulations gives no hint on how to search for such a derivation.

Idea:
I Take a set of clauses S (the search space), initially S = S0.

Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

If an inference in I can be applied, eventually it has to be applied
(fairness)

.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Unsatisfiability?

Completeness is formulated in terms of derivability of the empty
clause � from a set S0 of clauses in an inference system I. However,
this formulations gives no hint on how to search for such a derivation.

Idea:
I Take a set of clauses S (the search space), initially S = S0.

Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.
If an inference in I can be applied, eventually it has to be applied
(fairness).

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.



How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.



How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY



Saturation Algorithms: Inference Selection by Clause Selection

search space

given clause

candidate clauses

children

MEMORY



Saturation Algorithm

A saturation algorithm tries to saturate a set of clauses with respect to
a given inference system.
In theory there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run forever, but without generating �. In this case
the input set of clauses is satisfiable.



Saturation Algorithm in Practice

In practice there are three possible scenarios:
1. At some moment the empty clause � is generated, in this case

the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run until we run out of resources, but without
generating �. In this case it is unknown whether the input set is
unsatisfiable.



Outline

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6= b ∨ b 6= c ∨ f (c, c) = f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6= b ∨ b 6= c ∨ f (c, c) = f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.



Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6= b ∨ b 6= c ∨ f (c, c) = f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.



Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.



Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.



Bag Extension of an Ordering

Bag = finite multiset.
Let > be any (strict) ordering on a set X . The bag extension of > is a
binary relation >bag , on bags over X , defined as the smallest
transitive relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.

Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .



Bag Extension of an Ordering

Bag = finite multiset.
Let > be any (strict) ordering on a set X . The bag extension of > is a
binary relation >bag , on bags over X , defined as the smallest
transitive relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.
Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.

The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .



Bag Extension of an Ordering

Bag = finite multiset.
Let > be any (strict) ordering on a set X . The bag extension of > is a
binary relation >bag , on bags over X , defined as the smallest
transitive relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.
Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .



Clause Orderings

From now on consider clauses also as bags of literals. Note:
I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence
I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.



Clause Orderings

From now on consider clauses also as bags of literals. Note:
I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence
I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.



Clause Orderings

From now on consider clauses also as bags of literals. Note:
I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence
I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.



Redundancy

A clause C ∈ S is called redundant in S if it is a logical consequence
of clauses in S strictly smaller than C.



Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.

We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.



Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.
We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.



Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.
We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.



Redundant Clauses Can be Removed

In BRσ (and in the superposition calculus considered later) redundant
clauses can be removed from the search space.



Saturation with Redundancy

Let I be an inference system. Consider a saturation process with two
kinds of step Si ⇒ Si+1:

1. Adding the conclusion of an I-inference with premises in Si .

[generating inference]

2. Deletion of a clause redundant in Si , that is

Si+1 = Si − {C},

where C is redundant in Si .

[simplifying inference]



Saturation with Redundancy

Let I be an inference system. Consider a saturation process with two
kinds of step Si ⇒ Si+1:

1. Adding the conclusion of an I-inference with premises in Si .
[generating inference]

2. Deletion of a clause redundant in Si , that is

Si+1 = Si − {C},

where C is redundant in Si . [simplifying inference]


	Inference Systems
	Selection Functions
	Saturation Algorithms
	Redundancy

