
First-Order Theorem Proving and Vampire

Laura Kovács

Outline

Setting the Scene

Getting Started

Automated Reasoning by First-Order Theorem Proving

In a vague sense, automated reasoning involves

1. Representing a problem as a mathematical/logical statement

2. Automatically checking this statement’s consistency or truth

There are lots of places where we can apply automated reasoning.
For example,

I Proving software correctness (partial/total correctness)

I Generating loop invariants

I Program synthesis

I Model checking

I Your idea?

Automated Reasoning by First-Order Theorem Proving

In a vague sense, automated reasoning involves

1. Representing a problem as a mathematical/logical statement

2. Automatically checking this statement’s consistency or truth

There are lots of places where we can apply automated reasoning.
For example,

I Proving software correctness (partial/total correctness)

I Generating loop invariants

I Program synthesis

I Model checking

I Your idea?

Kinds of Automated Reasoning

Given a statement S we can establish different conclusions about it

I Consistency - there is a way of making S true

I Inconsistency - there is no way of making S true

I Validity - S is always true

We can look at these three notions from two different views.

Semantic view Syntactic view

S is consistent Has a model No proof of ⊥ from S
S is inconsistent No model A proof of ⊥ from S
S is valid True in all models A proof of ⊥ from ¬S

Notes

1. Here we have focussed only on proofs of inconsistency.

2. Consistency is commonly referred to as satisfiability

Kinds of Automated Reasoning

Given a statement S we can establish different conclusions about it

I Consistency - there is a way of making S true

I Inconsistency - there is no way of making S true

I Validity - S is always true

We can look at these three notions from two different views.

Semantic view Syntactic view

S is consistent Has a model No proof of ⊥ from S
S is inconsistent No model A proof of ⊥ from S
S is valid True in all models A proof of ⊥ from ¬S

Notes

1. Here we have focussed only on proofs of inconsistency.

2. Consistency is commonly referred to as satisfiability

Kinds of Automated Reasoning

Given a statement S we can establish different conclusions about it

I Consistency - there is a way of making S true

I Inconsistency - there is no way of making S true

I Validity - S is always true

We can look at these three notions from two different views.

Semantic view Syntactic view

S is consistent Has a model No proof of ⊥ from S
S is inconsistent No model A proof of ⊥ from S
S is valid True in all models A proof of ⊥ from ¬S

Notes

1. Here we have focussed only on proofs of inconsistency.

2. Consistency is commonly referred to as satisfiability

Kinds of Automated Reasoners

Input Example(s)

SAT Solvers Propositional formulae MiniSat

SMT Solvers (First-order) formulae + theories Z3,CVC4

Theorem Provers First-order formulae (+ theories) Vampire,E

Proof Assistants High-order formulae Isabelle,Coq
(interactive)

Above the line focus on models and might be decidable. Below the
line focus on proofs and are rarely decidable.

Kinds of Automated Reasoners

Input Example(s)

SAT Solvers Propositional formulae MiniSat

SMT Solvers (First-order) formulae + theories Z3,CVC4

Theorem Provers First-order formulae (+ theories) Vampire,E

Proof Assistants High-order formulae Isabelle,Coq
(interactive)

Above the line focus on models and might be decidable. Below the
line focus on proofs and are rarely decidable.

Kinds of Automated Reasoners

Input Example(s)

SAT Solvers Propositional formulae MiniSat

SMT Solvers (First-order) formulae + theories Z3,CVC4

Theorem Provers First-order formulae (+ theories) Vampire,E

Proof Assistants High-order formulae Isabelle,Coq
(interactive)

Above the line focus on models and might be decidable. Below the
line focus on proofs and are rarely decidable.

Outline

Setting the Scene

Getting Started

Getting Started

Vampire: an automated first-order theorem prover

Go to

https://vprover.github.io/download.html

and pick the route most suitable to you.

Notes:

I For Linux users, a binary is probably the easiest route
I For Mac users, you need to build from source

I run make vampire rel

I For Windows users, the easiest route for this tutorial is a
virtual machine and then use Linux

https://vprover.github.io/download.html

Getting Started

Vampire: an automated first-order theorem prover

Go to

https://vprover.github.io/download.html

and pick the route most suitable to you.

Notes:

I For Linux users, a binary is probably the easiest route
I For Mac users, you need to build from source

I run make vampire rel

I For Windows users, the easiest route for this tutorial is a
virtual machine and then use Linux

https://vprover.github.io/download.html

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then
it is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove
that x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then
it is commutative.
More formally: in a group “assuming that x2 = 1 for all x prove
that x · y = y · x holds for all x , y .”

What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then
it is commutative.
More formally: in a group “assuming that x2 = 1 for all x prove
that x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)

Conjecture: ∀x∀y(x · y = y · x)

In the TPTP Syntax

The TPTP library (Thousands of Problems for Theorem Provers),
http://www.tptp.org contains a large collection of first-order problems.

For representing these problems it uses the TPTP syntax, which is
understood by all modern theorem provers, including Vampire.

http://www.tptp.org

In the TPTP Syntax

In the TPTP syntax this group theory problem can be written down as
follows:

%---- 1 * x = x

fof(left identity,axiom,

! [X] : mult(e,X) = X).

%---- i(x) * x = 1

fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).

%---- (x * y) * z = x * (y * z)

fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).

%---- x * x = 1

fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).

%---- prove x * y = y * x

fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).

Running Vampire of a TPTP file

is easy: simply use

vampire <filename>

One can also run Vampire with various options, some of them will
be explained later. For example, save the group theory problem in
a file group.tptp and try

vampire --thanks <your name> group.tptp

Running Vampire of a TPTP file

is easy: simply use

vampire <filename>

One can also run Vampire with various options, some of them will
be explained later. For example, save the group theory problem in
a file group.tptp and try

vampire --thanks <your name> group.tptp

First-Order Logic (FOL) and TPTP

I Language: variables, function and predicate (relation) symbols. A
constant symbol is a special case of a function symbol.

In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f
is a function symbol of arity n and t1, . . . , tn are terms. Terms
denote domain elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms. Formulas denote
properties of domain elements.

I All symbols are uninterpreted, apart from equality =.

First-Order Logic (FOL) and TPTP

I Language: variables, function and predicate (relation) symbols. A
constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f
is a function symbol of arity n and t1, . . . , tn are terms. Terms
denote domain elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms. Formulas denote
properties of domain elements.

I All symbols are uninterpreted, apart from equality =.

First-Order Logic (FOL) and TPTP

I Language: variables, function and predicate (relation) symbols. A
constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f
is a function symbol of arity n and t1, . . . , tn are terms.

Terms
denote domain elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms. Formulas denote
properties of domain elements.

I All symbols are uninterpreted, apart from equality =.

First-Order Logic (FOL) and TPTP

I Language: variables, function and predicate (relation) symbols. A
constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f
is a function symbol of arity n and t1, . . . , tn are terms. Terms
denote domain elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms. Formulas denote
properties of domain elements.

I All symbols are uninterpreted, apart from equality =.

First-Order Logic (FOL) and TPTP

I Language: variables, function and predicate (relation) symbols. A
constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f
is a function symbol of arity n and t1, . . . , tn are terms. Terms
denote domain elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms.

Formulas denote
properties of domain elements.

I All symbols are uninterpreted, apart from equality =.

First-Order Logic (FOL) and TPTP

I Language: variables, function and predicate (relation) symbols. A
constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f
is a function symbol of arity n and t1, . . . , tn are terms. Terms
denote domain elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms. Formulas denote
properties of domain elements.

I All symbols are uninterpreted, apart from equality =.

First-Order Logic and TPTP

FOL TPTP

⊥, > $false, $true
¬a ~a

a1 ∧ . . . ∧ an a1 & ... & an

a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2

(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a

(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a

More on the TPTP Syntax

I Comments

I Input formula names and roles

I Equality

%---- 1 * x = x

fof(left identity,axiom,(

! [X] : mult(e,X) = X)).

%---- i(x) * x = 1

fof(left inverse,axiom,(

! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)

fof(associativity,axiom,(

! [X,Y,Z] :

mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1

fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).

%---- prove x * y = y * x

fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments

I Input formula names and roles

I Equality

%---- 1 * x = x

fof(left identity,axiom,(

! [X] : mult(e,X) = X)).

%---- i(x) * x = 1

fof(left inverse,axiom,(

! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)

fof(associativity,axiom,(

! [X,Y,Z] :

mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1

fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).

%---- prove x * y = y * x

fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments

I Input formula names

and roles

I Equality

%---- 1 * x = x

fof(left identity,axiom,(

! [X] : mult(e,X) = X)).

%---- i(x) * x = 1

fof(left inverse,axiom,(

! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)

fof(associativity,axiom,(

! [X,Y,Z] :

mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1

fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).

%---- prove x * y = y * x

fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments

I Input formula names and roles

I Equality

%---- 1 * x = x

fof(left identity,axiom,(

! [X] : mult(e,X) = X)).

%---- i(x) * x = 1

fof(left inverse,axiom,(

! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)

fof(associativity,axiom,(

! [X,Y,Z] :

mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1

fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).

%---- prove x * y = y * x

fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments

I Input formula names and roles

I Equality

%---- 1 * x = x

fof(left identity,axiom,(

! [X] : mult(e,X) = X)).

%---- i(x) * x = 1

fof(left inverse,axiom,(

! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)

fof(associativity,axiom,(

! [X,Y,Z] :

mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1

fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).

%---- prove x * y = y * x

fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .

Vampire

I Completely automatic: once you started a proof attempt, it
can only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem
proving: won CASC > 50 times.

Vampire

I Completely automatic: once you started a proof attempt, it
can only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem
proving: won CASC > 50 times.

Recap – What an Automatic Theorem Prover is Expected to Do

Input:

I a set of axioms (first order formulas) or clauses;

I a conjecture (first-order formula or set of clauses).

Output:

I proof (hopefully).

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G ,

1. negate the conjecture;

2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G .

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated
like any other formula.

In fact, Vampire (and other provers) internally treat conjectures
differently, to make proof search more goal-oriented.

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G ,

1. negate the conjecture;

2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G .

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated
like any other formula.

In fact, Vampire (and other provers) internally treat conjectures
differently, to make proof search more goal-oriented.

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G ,

1. negate the conjecture;

2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G .

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated
like any other formula.

In fact, Vampire (and other provers) internally treat conjectures
differently, to make proof search more goal-oriented.

General Scheme (simplified)

I Read a problem;

I Determine proof-search options to be used for this problem;

I Preprocess the problem;

I Convert it into CNF;

I Run a saturation algorithm on it, try to derive false.

I If false is derived, report the result, maybe including a
refutation.

Trying to derive false using a saturation algorithm is the hardest
part, which in practice may not terminate or run out of memory.

General Scheme (simplified)

I Read a problem;

I Determine proof-search options to be used for this problem;

I Preprocess the problem;

I Convert it into CNF;

I Run a saturation algorithm on it, try to derive false.

I If false is derived, report the result, maybe including a
refutation.

Trying to derive false using a saturation algorithm is the hardest
part, which in practice may not terminate or run out of memory.

	Setting the Scene
	Getting Started

