
First-Order Theorem Proving and Vampire

Laura Kovács
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Automated Reasoning by First-Order Theorem Proving

In a vague sense, automated reasoning involves

1. Representing a problem as a mathematical/logical statement

2. Automatically checking this statement’s consistency or truth

There are lots of places where we can apply automated reasoning.
For example,

I Proving software correctness (partial/total correctness)

I Generating loop invariants

I Program synthesis

I Model checking

I Your idea?
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Kinds of Automated Reasoning

Given a statement S we can establish different conclusions about it

I Consistency - there is a way of making S true

I Inconsistency - there is no way of making S true

I Validity - S is always true

We can look at these three notions from two different views.

Semantic view Syntactic view

S is consistent Has a model No proof of ⊥ from S
S is inconsistent No model A proof of ⊥ from S
S is valid True in all models A proof of ⊥ from ¬S

Notes

1. Here we have focussed only on proofs of inconsistency.

2. Consistency is commonly referred to as satisfiability
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Kinds of Automated Reasoners

Input Example(s)

SAT Solvers Propositional formulae MiniSat

SMT Solvers (First-order) formulae + theories Z3,CVC4

Theorem Provers First-order formulae (+ theories) Vampire,E

Proof Assistants High-order formulae Isabelle,Coq
(interactive)

Above the line focus on models and might be decidable. Below the
line focus on proofs and are rarely decidable.
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Getting Started

Vampire: an automated first-order theorem prover

Go to

https://vprover.github.io/download.html

and pick the route most suitable to you.

Notes:

I For Linux users, a binary is probably the easiest route
I For Mac users, you need to build from source

I run make vampire rel

I For Windows users, the easiest route for this tutorial is a
virtual machine and then use Linux

https://vprover.github.io/download.html
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First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then
it is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove
that x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))
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Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)

Conjecture: ∀x∀y(x · y = y · x)



In the TPTP Syntax

The TPTP library (Thousands of Problems for Theorem Provers),
http://www.tptp.org contains a large collection of first-order problems.

For representing these problems it uses the TPTP syntax, which is
understood by all modern theorem provers, including Vampire.

http://www.tptp.org


In the TPTP Syntax

In the TPTP syntax this group theory problem can be written down as
follows:

%---- 1 * x = x

fof(left identity,axiom,

! [X] : mult(e,X) = X).

%---- i(x) * x = 1

fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).

%---- (x * y) * z = x * (y * z)

fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).

%---- x * x = 1

fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).

%---- prove x * y = y * x

fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).



Running Vampire of a TPTP file

is easy: simply use

vampire <filename>

One can also run Vampire with various options, some of them will
be explained later. For example, save the group theory problem in
a file group.tptp and try

vampire --thanks <your name> group.tptp
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First-Order Logic (FOL) and TPTP

I Language: variables, function and predicate (relation) symbols. A
constant symbol is a special case of a function symbol.

In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f
is a function symbol of arity n and t1, . . . , tn are terms. Terms
denote domain elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate
symbol of arity n and t1, . . . , tn are terms. Formulas denote
properties of domain elements.

I All symbols are uninterpreted, apart from equality =.
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First-Order Logic and TPTP

FOL TPTP

⊥, > $false, $true
¬a ~a

a1 ∧ . . . ∧ an a1 & ... & an

a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2

(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a

(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a



More on the TPTP Syntax

I Comments

I Input formula names and roles

I Equality

%---- 1 * x = x

fof(left identity,axiom,(

! [X] : mult(e,X) = X )).

%---- i(x) * x = 1

fof(left inverse,axiom,(

! [X] : mult(inverse(X),X) = e )).

%---- (x * y) * z = x * (y * z)

fof(associativity,axiom,(

! [X,Y,Z] :

mult(mult(X,Y),Z) = mult(X,mult(Y,Z)) )).

%---- x * x = 1

fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e ).

%---- prove x * y = y * x

fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X) ).
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Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
. . .
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90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1)!=mult(X1,X0)<=>mult(sK0,sK1)!=mult(sK1,sK0) [choice]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating/ simplifying inferences, unused formulas
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can only be interrupted by terminating the process.
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proving: won CASC > 50 times.
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Recap – What an Automatic Theorem Prover is Expected to Do

Input:

I a set of axioms (first order formulas) or clauses;

I a conjecture (first-order formula or set of clauses).

Output:

I proof (hopefully).



Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G ,

1. negate the conjecture;

2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G .

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated
like any other formula.

In fact, Vampire (and other provers) internally treat conjectures
differently, to make proof search more goal-oriented.
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General Scheme (simplified)

I Read a problem;

I Determine proof-search options to be used for this problem;

I Preprocess the problem;

I Convert it into CNF;

I Run a saturation algorithm on it, try to derive false.

I If false is derived, report the result, maybe including a
refutation.

Trying to derive false using a saturation algorithm is the hardest
part, which in practice may not terminate or run out of memory.
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