From verification to
causality-based explications

Christel Baier

TU Dresden
Joint work with:
Clemens Dubslaff Simon Jantsch Jakob Piribauer
Florian Funke Rupak Majumdar Robin Ziemek

Stefan Kiefer Corto Mascle



From verification to explications

Classical verification task:
given: a system model M and a specification ¢

question: does M satisfy ¢7
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From verification to explications

Classical verification task:
given: a system model M and a specification ¢

question: does M satisfy ¢7
answer: yes or no

N

mathematical proof counterexample
or certificate

Explication task (in the verification context):

.. should provide deeper insights why the specification holds or not
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From verification to explications

Classical verification task:
given: a system model M and a specification ¢

question: does M satisfy ¢7
answer: yes or no

N

mathematical proof counterexample
or certificate

Explication task (in the verification context):
« what causes the specification to hold for the full model ?
o who is responsible for a requirement violation 7 and to which degree?

« if a bad behavior occurs, what has caused the violation of the specification 7
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Causality
long-standing discussion in philosophy

David Hume David K. Lewis

(philosopher, 1711-1776) (philosopher, 1941-2001)

"

and many more ...
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Causality

long-standing discussion in philosophy, but also Al

Joseph Halpern Judea Pearl

Godel Prize 1997 Turing Award
Dijkstra Prize 2009 Winner 2011
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Various forms of causality
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Various forms of causality

« actual/specific vs general /type causes
actual cause is a factual event C that causes the effect E
general cause: e.g. “sweets cause obesity”
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Various forms of causality

« actual/specific vs general /type causes
actual cause is a factual event C that causes the effect E
general cause: e.g. “sweets cause obesity”

« backward vs forward causality-based reasoning
backward: what has caused an observed effect E in a given event sequence?
forward: what can cause an event E in a given world model?

« counterfactual vs necessary vs sufficient cause-effect relations
counterfactual: if C would not have happened, then E would not have occured
necessary: if E occurs then C must have happened before
sufficient: if C happens then always E will occur somewhen later

« deterministic vs probabilistic causes, and many more ...
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Given a TS M with state space S and a set E C S of effect states.
Define forward notions of causality:

e Necessary cause

“if the effect occurs then the cause must have happened before”

« sufficient cause

“if the cause happens then the effect will occur somewhen later”

« counterfactual cause

“set of states with minimal number of modifications to avoid the effect”
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Cause-effect relations in TS

Given a TS M with state space S and a set E C S of effect states.
Define forward notions of causality:

e Necessary cause

“if the effect occurs then the cause must have happened before”

« sufficient cause

“if the cause happens then the effect will occur somewhen later”

« counterfactual cause

“set of states with minimal number of modifications to avoid the effect”

. many possible formalizations ...
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Cause-effect relations in TS

Given a TS M with state space S and a set E C S of effect states.
Define forward notions of causality:

e Necessary cause

“if the effect occurs then the cause must have happened before”

« sufficient cause

“if the cause happens then the effect will occur somewhen later”

Here: characterization of necessary/sufficient causes using CTL*
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Cause-effect relations in TS

Given a TS M with state space S and a set E C S of effect states.
Let CCSst. CNE=@. Cis called a
- necessary cause for E if M |= V- ((-C)UE)

“if the effect occurs then the cause must have happened before”

« sufficient cause ...

“if the cause happens then the effect will occur somewhen later”
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Given a TS M with state space S and a set E C S of effect states.

Let CCSst. CNE=@. Cis called a
- necessary cause for E if M = V-((~C)UE)

“if the effect occurs then the cause must have happened before”

- sufficient cause for E if M |=VO(C = OOE)

“if the cause happens then the effect will occur somewhen later”

30/359



Cause-effect relations in TS

Given a TS M with state space S and a set E C S of effect states.
Let CCSst. CNE=@. Cis called a
- necessary cause for E if M = V-((~C)UE)

“if the effect occurs then the cause must have happened before”

- sufficient cause for E if M |=VO(C = OOE)

“if the cause happens then the effect will occur somewhen later”
Monotonicity:
C is necessary and C € D = D is necessary
C is sufficient and C D D = D is sufficient

31/359



Cause-effect relations in TS

Given a TS M with state space S and a set E C S of effect states.
Let CCSst. CNE=@. Cis called a
- necessary cause for E if M = V-((~C)UE)

“if the effect occurs then the cause must have happened before”

- sufficient cause for E if M |=VO(C = OOE)

“if the cause happens then the effect will occur somewhen later”
Transitivity (up to disjointness):
C necessary for D & D necessary for E = C necessary for E
C sufficient for D & D sufficient for E = C sufficient for E
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Cause-effect relations in TS

Given a TS M with state space S and a set E C S of effect states.
Let CCSst. CNE=@. Cis called a
- necessary cause for E if M = V-((~C)UE)

“if the effect occurs then the cause must have happened before”
- sufficient cause for E if M |=VO(C = OOE)
“if the cause happens then the effect will occur somewhen later”
If all E-states are terminal then:
C is necessary iff M | V((}E — <>C)
C is sufficient iff M | V((}C — ()E)
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Example: necessary and sufficient causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a necessary cause for E iff M | V((}E — OC)
C is a sufficient cause for E iff M | V(OC — (}E)

effect set E = {e, &}
G040 -0
/
—=()
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Example: necessary and sufficient causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a necessary cause for E iff M | V((}E — OC)
C is a sufficient cause for E iff M | V(OC — (}E)

effect set E = {e, &}

Owb@ﬂO—“@ {c1, &} necessary and sufficient
/
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Example: necessary and sufficient causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a necessary cause for E iff M | V((}E — OC)
C is a sufficient cause for E iff M | V(OC — (}E)

effect set E = {e, &}
{c1, &} necessary and sufficient
{a} sufficient, not necessary

-
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Example: necessary and sufficient causes

Given a TS M with state space S and a set E C S of effect states
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Example: necessary and sufficient causes
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a necessary cause for E iff M | V((}E — OC)
C is a sufficient cause for E iff M | V(OC — (}E)

effect set E = {e), &}
Oéé O @ {c1, &} necessary, not sufficient
.—ﬁ e
/ {c1} neither necessary nor sufficient

’——b {c} sufficient, not necessary
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Pruning of necessary and sufficient causes
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a necessary cause for E iff M | V((}E — OC)
C is a sufficient cause for E iff M | V(OC — (}E)

If C is a necessary resp. sufficient cause for E then so is its pruning
| C|, defined by:

|C]={se C: M E3(-C)Us}
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Pruning of necessary and sufficient causes
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a necessary cause for E iff M | V((}E — OC)

C is a sufficient cause for E iff M | V(OC — (}E)

If C is a necessary resp. sufficient cause for E then so is its pruning
| C|, defined by:

|C]={se C: M E3(-C)Us}

... towards small and early causes (“root causes”) ...
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Let’s have a closer look: sufficient causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a sufficient cause for E iff M | V((}C — (}E)
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Let’s have a closer look: sufficient causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a sufficient cause for E iff M | V((}C — (}E)
Properties of sufficient causes:

- Ce = {s€S:sEVOVOE} is a sufficient cause

.. and contains all other sufficient causes
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Let’s have a closer look: sufficient causes
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a sufficient cause for E iff M | V((}C — (}E)

Properties of sufficient causes:

- Ce = {s€S:sEVOVOE} is a sufficient cause

.. and contains all other sufficient causes

o If M EIOVOVOE then & is the only sufficient cause.
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Let’s have a closer look: sufficient causes
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:
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Let’s have a closer look: sufficient causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a sufficient cause for E iff M | V((}C — (}E)

Properties of sufficient causes:

- Ce = {s€S:sEVOVOE} is a sufficient cause

.. and contains all other sufficient causes
o If M EIOVOVOE then & is the only sufficient cause.

- Canonical sufficient cause: | Cg|

.. is indeed a good one, with maximal degree of necessity (see later)
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Let’s have a closer look: necessary causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a necessary cause for E iff M | V((}E — OC)

Properties of necessary causes:
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Given a TS M with state space S and a set E C S of effect states
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C is a necessary cause for E iff M | V((}E — OC)

Properties of necessary causes:

« The set I of initial states is a trivial necessary cause.
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Let’s have a closer look: necessary causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:

C is a necessary cause for E iff M | V((}E — OC)
Properties of necessary causes:

« The set I of initial states is a trivial necessary cause.

o Pre(E) = {s:3s' € E s.t. s — s’} is a necessary cause for E.
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Let’s have a closer look: necessary causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC S st. CNE =@&. Then:
C is a necessary cause for E iff M | V((}E — OC)
Properties of necessary causes:
« The set I of initial states is a trivial necessary cause.

o Pre(E) = {s:3s' € E s.t. s — s’} is a necessary cause for E.
« How to define “good necessary causes”?

|dea: seek for necessary causes that are “maximal sufficient”
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Degree of sufficiency and necessity

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC Ssit. CNE =@ and C,E # 2.

Consider M as a Markov chain (uniform distributions for the initial
states and the successors of every state).
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Pru( QE|OC) =
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Degree of sufficiency and necessity
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC Ssit. CNE =@ and C,E # 2.

Consider M as a Markov chain (uniform distributions for the initial
states and the successors of every state).

PI‘M(OC A OE)
PI‘M(OC)

degree of suffiency
(“precision™)

Pru( QE|OC) =

If C is a sufficient cause then the degree of sufficiency is 1.
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Degree of sufficiency and necessity
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC Ssit. CNE =@ and C,E # 2.

Consider M as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency Prp(OC A QE)
(“precision”) Pru( O | 0C) Prp(0C)
degree of necessity PrM( OC|OE) = Prp(OC A QE)

PI‘M(OE)

(“recall”)
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Degree of sufficiency and necessity
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC Ssit. CNE =@ and C,E # 2.

Consider M as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency Prp(OC A QE)
(“precision”) Pru( O | 0C) Prp(0C)

degree of necessity _ Prpy(OCAQE)
(“recall”) PrM( OC|OE) = Prap(OE)

If C is a necessary cause then the degree of necessity is 1.
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Degree of sufficiency and necessity
Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal). Let CC Ssit. CNE =@ and C,E # 2.

Consider M as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency Prp(OC A QE)
(“precision”) Pru( O | 0C) Prp(0C)

degree of necessity _ Prpy(OCAQE)
(“recall”) PrM( OC|OE) = Prap(OE)

C and | C| have the same degree of suffiency and necessity.

55 /359



Optimal sufficient and necessary causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal, nonempty).
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Optimal sufficient and necessary causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:

| Ce| where Cg = {s €S:skE VOV(}E}
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Optimal sufficient and necessary causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:

| Ce| where Cg = {s €S:skE VOV(}E}

Necessary causes with maximal degree of sufficiency:

| Pre(E)]
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Optimal sufficient and necessary causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:
| Ce| where Cg = {s €S:skE VOV(}E}

Necessary causes with maximal degree of sufficiency:

|Pre(E)] and |C] where C = {s € S : Pry(QPre(E)) =1}

59 /359



Optimal sufficient and necessary causes

Given a TS M with state space S and a set E C S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:
|Ce] where Ce = {s€S:sEVOVOE}
Necessary causes with maximal degree of sufficiency:

|Pre(E)] and |C] where C = {s € S : Pry(QPre(E)) =1}

State-minimal necessary causes computable in polynomial time
using algorithms for weight-minimal s-t-cuts in directed graphs
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Outline

Introduction

Necessary and sufficient causes

Counterfactuality and responsibility in verification

Halpern-Pearl's approach to counterfactual causality
mutation-based forward responsibility

game-based forward and backward responsibility

quantitative responsibility via Shapley values
« Probabilistic causality in Markovian models

Conclusions
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Halpern-Pearl’'s approach to causality

actual /specific vs general /type causes
actual cause is a factual event C that causes the effect E

*

X

backward vs forward causality-based reasoning
backward: what has caused an observed effect E (e.g., observed event sequence)?

« counterfactual vs necessary vs sufficient cause-effect relations
counterfactual: if C would not have happened, then E would not have occured

deterministic vs probabilistic causes, and many more ...

*

63 /359



HP structural equation model

64 /359



HP structural equation model

Structural equation model: S = (Exo, Endo, ) where
Exo: set of exogenous variables (specify the context)

Endo: totally ordered set of endogenous variables, say xi, ..., X,
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HP structural equation model

Structural equation model: S = (Exo, Endo, ) where
Exo: set of exogenous variables (specify the context)

Endo: totally ordered set of endogenous variables, say xi, ..., X,
f= (fl, ceey f;,) where ﬂ : VaI(Exo,xl, cen ,X,'_l) — Val(x;)

f yields the values of the endo variables for context ¢ € Val(Exo):

a1 = Sl(C)
Qy = Sz(C)

fi(c) (value for x;)
f(c, 1) (value for xp)

1131+

II%:

ﬁ,(c, i, ..., Of,,_l) (value for xp)

an = i)
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HP structural equation model

Structural equation model: S = (Exo, Endo, ) where
Exo: set of exogenous variables (specify the context)

Endo: totally ordered set of endogenous variables, say xi, ..., X,
f= (fl, ceey f;,) where ﬂ : VaI(Exo, X1y... ,X,'_l) — Val(x;)

Interventions:

for counterfactual reasoning:

“enforce values of endogenous variables (ignoring their equations)
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HP structural equation model

Structural equation model: S = (Exo, Endo, ) where
Exo: set of exogenous variables (specify the context)

Endo: totally ordered set of endogenous variables, say xi, ..., X,
f= (fl, ceey f;,) where ﬂ : VaI(Exo,xl, cen ,X,'_l) — Val(x;)

Interventions: given Y C Endo and 3 € Val(Y), let

stves = {

S when the Y-variables are treated as
constants given by the values in 3

for counterfactual reasoning:

“enforce values of endogenous variables (ignoring their equations)”
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HP causality

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
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HP causality

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
« X C Endo and o = Sx(c)

AN

tuple of values for X
in 8 for context ¢
obtained by the equations

Xj = f;'(C,Xl, cee ,X,'_l)
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HP causality

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
« X C Endo and o = Sx(c)

Then X=a is called a cause for ¢ in context c iff

[ACl] ... counterfactual condition ...

[AC2]| ... minimality condition ...
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HP causality

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
« X C Endo and o = Sx(c)

Then X=a is a but-for cause for ¢ in context c iff
[AC1] There is 8 € Val(X) such that
(S[X<Ale) E o

[AC2] ... minimality condition ...
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HP Causality [Halpern'15]

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
« X C Endo and o = Sx(c)

Then X=a is an actual cause for ¢ in context c iff

[AC1] There is 8 € Val(X) and Y C Endo such that
(SIX=B,Y=5Sy(e)l,e) E ~¢

[AC2] ... minimality condition ...
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HP Causality [Halpern'15]

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
« X C Endo and o = Sx(c)

Then X=a is an actual cause for ¢ in context c iff

[AC1] There is 8 € Val(X) and Y C Endo such that
(SIX=B,Y=5Sy(e)l,e) E ~¢
[AC2] X is minimal w.r.t. condition [AC1]
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HP causality and degree of responsibility

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
« x € Endo and o = S,(c)

Then, the degree of responsibility of x=a for ¢ is ...
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HP causality and degree of responsibility

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
« x € Endo and o = S,(c)
1

Then, the degree of responsibility of x=a for ¢ is 7; where

__ | minimal number of value-changes for endo variables
~ | required to make ¢ counterfactually depend on x
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HP causality and degree of responsibility

Let S = (Exo, Endo, f) be a structural equation model and
-  be a Boolean conditon for the values of variables (exo or endo)
. ¢ € Val(Exo) a context s.t. (S,¢) = ¢
« x € Endo and o = S,(c)
1

Then, the degree of responsibility of x=a for ¢ is 7; where

__ | minimal number of value-changes for endo variables
~ | required to make ¢ counterfactually depend on x

Formally: m = |X| where X is a smallest set of endogenous variables that contains
x and satisfies [AC1], i.e., there exist a valuation 3 for X and Y C Endo s.t.:

(SIX8,YSy(c)l,c) E ~¢
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« Probabilistic causality in Markovian models

Conclusions
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HP-based responsibility in TS
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Counterfactuality: backward vs forward
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Counterfactuality: backward vs forward

backward counterfactual causality

given an effect secanrio:

“if the cause would not have happened, then the effect would not have occured”
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Counterfactuality: backward vs forward

backward counterfactual causality

given an effect secanrio:

“if the cause would not have happened, then the effect would not have occured”

forward counterfactual causality

given a world model:

“minimal set of items that need to be modified to avoid the effect”
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Counterfactuality: backward vs forward

backward counterfactual causality

given an effect secanrio:

“Iif the cause would not have happened, then the effect would not have occured”

forward counterfactual causality = forward responsibility

given a world model:

“minimal set of items that need to be modified to avoid the effect”

degree of responsibility:

numerical values for individual cause items
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HP-like causality and responsibility in TS
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HP-like causality and responsibility in TS

Given a transition system M with state space S and labeling
functions (Ls)ses where Ls : AP — {0,1}.
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HP-like causality and responsibility in TS

Given a transition system M with state space S and labeling
functions (Ls)ses where Ls : AP — {0,1}.

Intervention (“mutations of the truth values of atomic propositions” ):

- Given g€ AP and T C S, then M7 4 is M with flipped
labeling values L;(q) for t € T.
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HP-like causality and responsibility in TS

Given a transition system M with state space S and labeling
functions (Ls)ses where Ls : AP — {0,1}.

Intervention (“mutations of the truth values of atomic propositions” ):

- Given g€ AP and T C S, then M7 4 is M with flipped
labeling values L;(q) for t € T.

M "9 °p T ={t1,t2}

o N
A/

1 F
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HP-like causality and responsibility in TS

Given a transition system M with state space S and labeling
functions (Ls)ses where Ls : AP — {0,1}.

Intervention (“mutations of the truth values of atomic propositions” ):

- Given g€ AP and T C S, then M7 4 is M with flipped
labeling values L;(q) for t € T.

M "9 ~p Mr, q “p
ﬂ?@/\‘ 1oe 9 “F@/\ 9 e
FARE ARNES

q
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HP-like causality and responsibility in TS

Given a transition system M with state space S and labeling
functions (Ls)ses where Ls : AP — {0,1}.

Intervention (“mutations of the truth values of atomic propositions” ):

- Given g€ AP and T C S, then M7 4 is M with flipped
labeling values L;(q) for t € T.

Suppose M |= ¢ (temporal property over 247) and let g € AP.
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HP-like causality and responsibility in TS

Given a transition system M with state space S and labeling
functions (Ls)ses where Ls : AP — {0,1}.

Intervention (“mutations of the truth values of atomic propositions” ):

- Given g€ AP and T C S, then M7 4 is M with flipped
labeling values L;(q) for t € T.

Suppose M |= ¢ (temporal property over 247) and let g € AP.

- switching pair: (T,s) where T C S, s € S s.t.
MT’q |= ¢ and MTU{s},q % QS

92 /359



HP-like causality and responsibility in TS

Given a transition system M with state space S and labeling
functions (Ls)ses where Ls : AP — {0,1}.

Intervention (“mutations of the truth values of atomic propositions” ):

- Given g€ AP and T C S, then M7 4 is M with flipped
labeling values L;(q) for t € T.

Suppose M |= ¢ (temporal property over 247) and let g € AP.
- switching pair: (T,s) where T C S, s € S s.t.
MT,q |= ¢ and MTU{s},q bé ¢

. state s is a g-cause state for M |= ¢ if there exists a switching
pair (T,s)
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HP-like causality and responsibility in TS

Given a transition system M with state space S and labeling
functions (Ls)ses where Ls : AP — {0,1}.

Intervention (“mutations of the truth values of atomic propositions” ):

- Given g€ AP and T C S, then M7 4 is M with flipped
labeling values L;(q) for t € T.

Suppose M |= ¢ (temporal property over 247) and let g € AP.
- switching pair: (T,s) where T C S, s € S s.t.

MT,q |= ¢ and MTU{s},q bé ¢

. degree of g-responsibility of cause state s is 1/(| T|4+1) where
(T,s) is a switching pair of minimal size
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Example: responsibility a la Chockler et al
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Example: responsibility a la Chockler et al

7
5

&

/\@

AP = {q}
51,52,53 bé q

saFEq
M | Hq

Mg b30q iff T ={s}

96 /359



Example: responsibility a la Chockler et al

7
5

&

/\@

AP = {q}
51,52,53 bé q

saFEq
M | Hq

Mg b30q iff T ={s}

(2, 51) is the only switching pair
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Example: responsibility a la Chockler et al

D) AP = {q}
\ 51,52,53 bé q
/ saFEq
@ @ M E g
J/ Mz g bEF0q iff T ={s}
(2, 51) is the only switching pair

« 53 is a g-cause state and has responsibility 1
- S1, 5,53 are not g-cause states and have responsibility 0
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Example: responsibility a la Chockler et al

AP = {q}
/@\ 51,9~ q
3,5 Fq

@ @ M E g

\[/ MT,q bé EI(}q iff T = {53,54}

2 switching pairs

. 53,5 are g-cause states and have responsibility 1/2
. S1,$ are not g-cause states and have responsibility 0
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HP-like causality and responsibility in TS

So far: notions of g-cause and degree of g-responsibility for fixed
atomic proposition q
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HP-like causality and responsibility in TS

So far: notions of g-cause and degree of g-responsibility for fixed
atomic proposition q

Analogous definition independent of specific atomic proposition

Intervention:
. given T C S x AP, then M7 equals M with flipped values
for the pairs (s,q) € T
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HP-like causality and responsibility in TS

So far: notions of g-cause and degree of g-responsibility for fixed
atomic proposition q

Analogous definition independent of specific atomic proposition

Intervention:
. given T C S x AP, then Mt equals M with flipped values

for the pairs (s,q) € T
Suppose M |= ¢
cause: set T s.t. Mt [E ¢ and My |= ¢ for any subset U of T

degree of responsibility of pair (s,q) is 1/(| T|+1) where
Tu {(S, Q)} is a cause of minimal size (under all causes containing (s, q))
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Conclusions
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Responsibility w.r.t. nondeterministic choices

[Baier/Funke/Majumdar, 1JCAI'21]
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Responsibility w.r.t. nondeterministic choices

Starting point: transition system M with state space S and a path
property ¢ (bad event).

[Baier/Funke/Majumdar, 1JCAI'21]
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Responsibility w.r.t. nondeterministic choices

Starting point: transition system M with state space S and a path
property ¢ (bad event).

« forward: in which states do we need to control the
nondeterminism to ensure that ¢ does not hold in M?

106 /359



Responsibility w.r.t. nondeterministic choices

Starting point: transition system M with state space S and a path
property ¢ (bad event).

« forward: in which states do we need to control the
nondeterminism to ensure that ¢ does not hold in M?

« backward: for a given execution where ¢ holds, which states
were responsible for the satisfaction of ¢7?

which states would have had the option to avoid the bad event by resolving
the nondeterministic choices in a different way?
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Responsibility w.r.t. nondeterministic choices

Starting point: transition system M with state space S and a path
property ¢ (bad event).

Game-based notions of responsibility for sets C C S

w.r.t. to their power of avoiding the bad event in terms of their
nondeterministic choices
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Responsibility w.r.t. nondeterministic choices

Starting point: transition system M with state space S and a path
property ¢ (bad event).

Game-based notions of responsibility for sets C C S

w.r.t. to their power of avoiding the bad event in terms of their
nondeterministic choices

using the two-player game structure Mc:

arena: state space, initial state and transitions of M
player 1 controls all states in C (objective —¢)

player 2 controls all states in C = S\ C (objective o)
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Forward responsibility for temporal properties

Starting point: transition system M with state space S and a path
property ¢ (bad event).

Let C C S. Then, C is forward responsible for ¢ if
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Forward responsibility for temporal properties

Starting point: transition system M with state space S and a path
property ¢ (bad event).

Let C C S. Then, C is forward responsible for ¢ if
[F1] C has a winning strategy in M for objective = ¢

i.e., a strategy o for player 1 s.t. the bad event does not happen in o-plays
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Forward responsibility for temporal properties

Starting point: transition system M with state space S and a path
property ¢ (bad event).

Let C C S. Then, C is forward responsible for ¢ if

[F1] C has a winning strategy in M for objective = ¢

i.e., a strategy o for player 1 s.t. the bad event does not happen in o-plays

[F2] C is minimal w.r.t. [F1]

i.e., no proper subset can ensure that the bad event does not happen
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Forward responsibility for temporal properties

Starting point: transition system M with state space S and a path
property ¢ (bad event).
Let C C S. Then, C is forward responsible for ¢ if

[F1] C has a winning strategy in M for objective = ¢

i.e., a strategy o for player 1 s.t. the bad event does not happen in o-plays

[F2] C is minimal w.r.t. [F1]

i.e., no proper subset can ensure that the bad event does not happen

Observations:
o If M |=V¢ then noone is forward responsible, and vice versa.
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Forward responsibility for temporal properties

Starting point: transition system M with state space S and a path
property ¢ (bad event).

Let C C S. Then, C is forward responsible for ¢ if
[F1] C has a winning strategy in M for objective = ¢

i.e., a strategy o for player 1 s.t. the bad event does not happen in o-plays

[F2] C is minimal w.r.t. [F1]
i.e., no proper subset can ensure that the bad event does not happen
Observations:

o If M |=V¢ then noone is forward responsible, and vice versa.
o If M [=V~¢ then exactly C = & is forward responsible.
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Forward responsibility: example

¢ = Qfail  (“bad event”)
®/@\

/
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Forward responsibility: example

¢ = Qfail  (“bad event”)
®/@\

forward responsible sets:

{t,u}
/ &0
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Forward responsibility: example
A/@.\ ¢ = Qfail (“bad event”)
@ forward responsible sets:

o
/ G )
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Forward responsibility: example

¢ = Qfail  (“bad event”)
g /./@\

forward responsible sets:

/ {t,u}
(%0 {s,u}
{s, 1}
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Responsibility in TS

. so far: forward responsibility

“which states are responsible for the satisfaction of a property of the
entire model?”

« now: backward responsibility

“which states are responsible for the satisfaction of an undesired property
along a given error scenario?”
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Responsibility in TS

. so far: forward responsibility

“which states are responsible for the satisfaction of a property of the
entire model?”

« now: backward responsibility

“which states are responsible for the satisfaction of an undesired property
along a given error scenario?”

« strategic view: error scenario is a path

« causality-based view: error scenario is a path + strategy for opponents
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Strategic backward responsibility
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Strategic backward responsibility

Given TS M, path property ¢, a set C of states and a path
T=585%...st TE®.
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Strategic backward responsibility
Given TS M, path property ¢, a set C of states and a path
T=585%...st TE®.
C is strategically backward responsible for “w |= ¢" if

[SB1] there exists n € N such that C has a winning strategy
in Mc for objective m¢ from state s,

i.e., C could have played differently from s, to enforce the violation of ¢
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Strategic backward responsibility

Given TS M, path property ¢, a set C of states and a path
T=585%...st TE®.

C is strategically backward responsible for “w |= ¢" if

[SB1] there exists n € N such that C has a winning strategy
in Mc for objective m¢ from state s,

i.e., C could have played differently from s, to enforce the violation of ¢

[SB2] C is minimal w.r.t. [SB1]
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Strategic backward responsibility

Given TS M, path property ¢, a set C of states and a path
T=58%5%...st TFEe.

C is strategically backward responsible for “m |= ¢" if

[SB1] there exists n € N such that C has a winning strategy
in Mc for objective ~¢ from state s,

i.e., C could have played differently from s, to enforce the violation of ¢

[SB2] C is minimal w.r.t. [SB1]

objective from state s,: = ¢ if ¢ is prefix independent,
but residual property “—¢ after sp ...s,-1" in the general case
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Causal backward responsibility

Given TS M, path property ¢, a set C of states and a
deterministic strategy profile o = (o¢, o¢)

126 /359



Causal backward responsibility

Given TS M, path property ¢, a set C of states and a
deterministic strategy profile o = (o¢, o¢)

Strategy profile o specifies
a path (the unique o-play m,)
C's decision along other paths (for counterfactual reasoning)
C's decision along other paths (irrelevant)
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Causal backward responsibility

Given TS M, path property ¢, a set C of states and a
deterministic strategy profile o = (o¢,0¢) s.t. M,o |= ¢.
———
To = ¢
for the unique
o-play 7,
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Causal backward responsibility

Given TS M, path property ¢, a set C of states and a
deterministic strategy profile o = (o¢,0¢) s.t. M,o |= ¢.

C is causally backward responsible for “M, o = ¢" if

[CB1] there exists a strategy 7¢ for C in M¢ s.t. the
unique (7¢,o¢)-play satisfies = ¢
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Causal backward responsibility

Given TS M, path property ¢, a set C of states and a
deterministic strategy profile o = (o¢,0¢) s.t. M,o |= ¢.

C is causally backward responsible for “M, o = ¢" if

[CB1] there exists a strategy 7¢ for C in M¢ s.t. the
unique (7¢,o¢)-play satisfies = ¢

i.e., C could have played differently to enforce the violation of ¢,
when the strategy for the other states is fixed
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Causal backward responsibility

Given TS M, path property ¢, a set C of states and a
deterministic strategy profile o = (o¢,0¢) s.t. M,o |= ¢.

C is causally backward responsible for “M, o = ¢" if

[CB1] there exists a strategy 7¢ for C in M¢ s.t. the
unique (7¢,o¢)-play satisfies = ¢

i.e., C could have played differently to enforce the violation of ¢,

when the strategy for the other states is fixed

[CB2] C is minimal w.r.t. [CB1]

i.e., no proper subset of C can enforce the violation of ¢,
when the other states stick to their strategy
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Backward responsibility: example (strategic)

K

¢ = Ofail (“"bad event")
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Backward responsibility: example (strategic)

¢ = Ofail (“"bad event")
path st fail = ¢
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Backward responsibility: example (strategic)

¢ = Ofail (“"bad event")
path st fail = ¢

strat-backward responsible:

{s,u}
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Backward responsibility: example (strategic)

¢ = Ofail (“"bad event")
path st fail = ¢

strat-backward responsible:
{s, u}
{t}
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Backward responsibility: example (causal)

/@ ¢ = Ofail (“bad event")
;@ o
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Backward responsibility: example (causal)

/./CSD ¢ = Ofail (“bad event")

(%) strategy profile:
‘ s—=t t—=>f, u—o
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Backward responsibility: example (causal)

/./CSD ¢ = Ofail (“bad event")
(%) strategy profile:
‘ s—=t t—=>f, u—o

@ causally backward responsible:
{t}; change t - g
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Backward responsibility: example (causal)

;f(C@ ¢ = Ofail (“bad event")
(%) strategy profile:
‘ s—=t t—=>f, u—o
causally backward responsible:

{t}; change t - g
{s}; change s > u
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Relation between f-, sb- and cb-responsibility

f-responsible = forward responsible
sb-responsible = strategically backward responsible
cb-responsible = causally backward responsible
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Relation between f-, sb- and cb-responsibility

f-responsibility => sb-responsibility = cb-responsibility
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Relation between f-, sb- and cb-responsibility
f-responsibility => sb-responsibility = cb-responsibility

Let C be a set of states.

« C is f-responsible for ¢ iff C contains a coalition that is
sb-responsible for all 7 = ¢, and is minimal w.r.t. this
property.
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Relation between f-, sb- and cb-responsibility

f-responsibility => sb-responsibility = cb-responsibility

Let C be a set of states.

« C is f-responsible for ¢ iff C contains a coalition that is
sb-responsible for all 7 = ¢, and is minimal w.r.t. this
property.

. If C is sb-responsible for m |= ¢ and o a strategy profile s.t. =
is the o-play then C contains a coalition that is cb-responsible

for M,o = ¢.

143 /359



Relation between f-, sb- and cb-responsibility

f-responsibility = sb-responsibility = cb-responsibility

T

generalizes

o C is f-responsible for ¢ iff C cont HP-causality in SEM
sb-responsible for all 7 = ¢, and
property.

Let C be a set of states.

. If C is sb-responsible for  |= ¢ and o a strategy profile s.t. «
is the o-play then C contains a coalition that is cb-responsible

for M, o = ¢.

144 /359



HP-causality and cb-responsibility

structural equation model & = (Exo, Endo, f)
context ¢ € Val(Exo)

U

tree-like transition system Mg .
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HP-causality and cb-responsibility

structural equation model & = (Exo, Endo, f) total order for
context ¢ € Va/(EXO) endo variables:

I Xiy ... Xn
tree-like transition system Mg .

- root (level 0): given context ¢

. states at level / € {1,..., n}: valuations for x, ..., Xi—1, X

. transitions of state s = [xy=au, ..., Xji—1=aj_1] at level /—1:
default transition: s — [s, x=f(c, s)]

intervention: s — [s, x;=/] for any other value
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HP-causality and cb-responsibility

structural equation model & = (Exo, Endo, f)
context ¢ € Val(Exo)

U

tree-like transition system Mg .

Given a Boolean condition ¢ for the endogenous variables:

X=« is a but-for cause for ¢
iff the X-states constitute a cb-responsible coalition

for ¢ under the default strategy profile

where ¢ = { ‘o holds at some leave” and a = Sx(c)
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Conclusions
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Shapley values

s e e Lloyd S. Shapley
(Nobel prize 2012 for Economics)
i

L=
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Cooperative games and Shapley values
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Cooperative games and Shapley values

Cooperative game: one-shot game consisting of
. a finite set of agents, say Ag={1,...,n},
« a payoff function val : 28 -+ R s.t. val(&) =0
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Cooperative games and Shapley values

Cooperative game: one-shot game consisting of
. a finite set of agents, say Ag={1,...,n},
« a payoff function val : 28 -+ R s.t. val(&) =0

Given a total order m of Ag and an agent a € Ag:
Tsa = {i € Ag| n(i) = m(a)}
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Cooperative games and Shapley values

Cooperative game: one-shot game consisting of
. a finite set of agents, say Ag={1,...,n},
« a payoff function val : 246 = R s.t. val(@) =0

Given a total order m of Ag and an agent a € Ag:
Tsa = {i € Ag| n(i) = m(a)}

val(ms,) — val(ms,)

7

contribution of agent a to
the value of coalition 73,
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Cooperative games and Shapley values

Cooperative game: one-shot game consisting of
. a finite set of agents, say Ag={1,...,n},
« a payoff function val : 28 -+ R s.t. val(&) =0

Given a total order m of Ag and an agent a € Ag:
Tsa = {i € Ag| n(i) = m(a)}

Shapley value: Sh(a) = & > (val(msa) — val(rs.))

well,
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Cooperative games and Shapley values

Cooperative game: one-shot game consisting of
. a finite set of agents, say Ag={1,...,n},
« a payoff function val : 28 -+ R s.t. val(&) =0

Given a total order m of Ag and an agent a € Ag:
Tsa = {i € Ag| n(i) = m(a)}

Shapley value: Sh(a) = & > (val(msa) — val(rs.))

well,

— ;C;M RIS (v CUfa}) — val(C))
aEC
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Importance values for path properties in TS

Given: a transition system M with state space S and initial state
so and a path property ¢ (e.g. LTL formula).

[Mascle/Baier/Funke/Jantsch/Kiefer, LICS'21]
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Importance values for path properties in TS

Given: a transition system M with state space S and initial state
so and a path property ¢ (e.g. LTL formula).

Goal: define a measure for the impact of the states s € S on the
truth value of ¢ in terms of their nondeterministic choices.

157 /359



Importance values for path properties in TS

Given: a transition system M with state space S and initial state
so and a path property ¢ (e.g. LTL formula).

Goal: define a measure for the impact of the states s € S on the
truth value of ¢ in terms of their nondeterministic choices.

Game-based view:

. states may build coalitions that attempt to enforce ¢
no matter how the other states resolve their nondeterministic choices

« importance value of a state = Shapley value
when the payoff is 1 for any coalition that can enforce ¢ and 0 otherwise
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Importance values for path properties in TS

Given: a transition system M with state space S and initial state
so and a path property ¢ (e.g. LTL formula).

LetCCS
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Importance values for path properties in TS

Given: a transition system M with state space S and initial state
so and a path property ¢ (e.g. LTL formula).

Let C C S and M as before with objective ¢ for C

two-player turn-based game M¢:

arena: state space, initial state and transitions of M
player 1 controls all states in C (objective ¢)

player 2 controls all states in C =S\ C (objective =¢)
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Importance values for path properties in TS

Given: a transition system M with state space S and initial state
so and a path property ¢ (e.g. LTL formula).

Let C C S and M as before with objective ¢ for C
Payoff value of coalition C:

1(C) = 1 : if C has a winning strategy in M¢ for ¢
valy(C) = 0 : otherwise
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Importance values for path properties in TS

Given: a transition system M with state space S and initial state
so and a path property ¢ (e.g. LTL formula).

Let C C S and M as before with objective ¢ for C
Payoff value of coalition C:

1(C) = 1 : if C has a winning strategy in M¢ for ¢
valy(C) = 0 : otherwise

Importance value of state s = Shapley value of s

in the simple cooperative game with agent set Ag=S and payoff function valy
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Importance values for path properties in TS

Given: a transition system M with state space S and initial state
so and a path property ¢ (e.g. LTL formula).

Let C C S and M as before with objective ¢ for C
Payoff value of coalition C:

1(C) = 1 : if C has a winning strategy in M¢ for ¢
valy(C) = 0 : otherwise

Importance value of state s = Shapley value of s

in the simple cooperative game with agent set Ag=S and payoff function valy

0/1-values and monotonicity, i.e., if C C D then valy(C) < valy(D)
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Importance values: properties

Importance value of state s = Shapley value of s

Ty(s) = 3 LREAD (va),(CU{s}) — valy(C))

cCsSs
s¢ C
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Importance values: properties

Importance value of state s = Shapley value of s

Ty(s) = 3 LREAD (va),(CU{s}) — valy(C))

cCsS

s¢ C
_ |C]1(n—|C|-1)!
- z nl
(C,s)
switching

where (C, s) is switching iff val,(CU{s}) =1 and vals(C) =0
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Importance values: properties

Importance value of state s = Shapley value of s

Ty(s) = 3 LREAD (va),(CU{s}) — valy(C))

cCsS

s¢ C
_ |C]1(n—|C|-1)!
- z nl
(C,s)
switching

where (C, s) is switching iff val,(CU{s}) =1 and vals(C) =0

Zs(s) > 0 iff s is relevant, i.e., there is a switching pair (C, s)
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Importance values: properties

Importance value of state s = Shapley value of s

Ty(s) = 3 LREAD (va),(CU{s}) — valy(C))

cCsS

s¢ C
I(n—|C|-1)! I(r—|C|-1)!
= ¥ (9 (nnI!CI n _ ) |CI}(r rI!CI D' where r = IR
(€.9) (C.9)
switching relevant

where (C, s) is switching iff val,(CU{s}) =1 and val4(C) =0
Zs(s) > 0 iff s is relevant, i.e., there is a switching pair (C, s)

A switching pair (C, s) is relevant iff C C R = set of relevant states
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Importance values: properties

Importance value of state s = Shapley value of s

Zs(s) = X J£|K’_—r||£|—_1£ where r= # relevant states

(C,9)
relevant

Zero-sum property of the game structure M yields:
val¢(C) = 1 — Valﬁqg(?)
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Importance value of state s = Shapley value of s

Zs(s) = X J£|K’_—r||£|—_1£ where r= # relevant states

(C,9)
relevant

Zero-sum property of the game structure M yields:
val¢(C) = 1 — Valﬁqg(?)
(C,s) relevant for ¢ iff ((CNR)\{s},s) relevant for =¢

169 /359



Importance values: properties

Importance value of state s = Shapley value of s

Zs(s) = X J£|K’_—r||£|—_1£ where r= # relevant states

(C,9)
relevant

Zero-sum property of the game structure M yields:
val¢(C) = 1 — Valﬁqg(?)
(C,s) relevant for ¢ iff ((CNR)\{s},s) relevant for =¢
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Importance values: properties

Importance value of state s = Shapley value of s

Zs(s) = X J£|K’_—r||£|—_1£ where r= # relevant states

(C,9)
relevant

Zero-sum property of the game structure M yields:
valy(C) = 1—val.4(C)
(C,s) relevant for ¢ iff ((CNR)\{s},s) relevant for =¢
Hence: Zy(s) = Z.4(s)

“importance of states on the truth value (satisfaction or violation) of ¢"
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Importance values: example

@O 6 =00s A OO-f
deterministic states are irrelevant
(importance value 0)
/ \

0
-
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Importance values: example

@O ¢ =00s A OO-f
deterministic states are irrelevant
(importance value 0)
/ \ 0 two relevant pairs: ({w},g), ({g}, w)
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Importance values: example

¢ =00s A OO

deterministic states are irrelevant
(importance value 0)

two relevant pairs: ({w},g), ({g}, w)

Ty(w) = Ty(g) = 2 — w0 _ 1
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Importance values: example

© 6 =00s A OO—f
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Importance values: example

@ ¢ =00s A OO-F

/ \) state f is irrelevant
OP O,
e

-

177 /359



Importance values: example

@ ¢ =00s A QO—f
/ \) state f is irrelevant
/X 1 C has a winning strategy iff
- gECand|Cﬂ{w1,w2,s}|>2
0
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Importance values: example

@ ¢ =00s A OO-F
/ \) state f is irrelevant
/X ) C has a winning strategy iff
S 5 gECand|Cﬂ{w1,w2,s}|>2
@ In particular: r =4

179/359



Importance values: example

@ ¢ =00s A OO-F
/ \) state f is irrelevant
/X ) C has a winning strategy iff
- gECand|Cﬂ{w1,w2,s}|>2
Y @ 0

@ 2 In particular: r =4
| 21(4-2-1)!

4 relevant pairs for g and Zy(g) = 3 - + 3!(4_4?_1)! =1
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Importance values: example

() ¢ =00s A OO-f
1 / \) state f is irrelevant
(4

/%1 C has a winning strategy iff
s ; geCand|Cﬂ{W1,W2,5}|>2
@ A{i @
| 21(4-2-1)!

4 relevant pairs for g and Zy(g) = 3 = +

In particular: r =4

31(4-3-1)! _ 1
P =2

. 1(4—2—-1)1
2 relevant pairs for wy and Zy(wq) = 2 - 2'(44—f1)‘ = %
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Importance values: example

1
©F $=00s A OO
% @/ \)®4/C state f is irrelevant

/X \ C has a winning strategy iff
S g € C and |CN{wy, wy, s} >2
@ Y @ 0

_21(4-2-1)!

4 relevant pairs for g and Zy(g) = 3 = +

2 In particular: r =4

31(4-3-1)! _ 1
a2

. 1(4—2—-1)1
2 relevant pairs for wy and Zy(wq) = 2 - 2'(44—f1)‘ = %
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Importance values: algorithmic problems

For transition system M with state space S and path property ¢.

Value problem:
given C C S, check whether valy(C) =1

Usefulness problem:
given state s, decide whether Z,(s) > 0

Importance problem:
given state s, compute nl Zy(s)
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Importance values: algorithmic problems

For transition system M with state space S and path property ¢.

Value problem: ... standard game solving
given C C S, check whether valy(C) =1

Usefulness problem:
given state s, decide whether Z,(s) > 0

Importance problem:
given state s, compute nl Zy(s)
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Importance values: algorithmic problems

For transition system M with state space S and path property ¢.

Value problem: ... standard game solving
given C C S, check whether valy(C) =1

Usefulness problem:
given state s, decide whether Z,(s) > 0

Importance problem:
given state s, compute nl Zy(s)

Solving the usefulness and importance problems, via standard game
solving algorithms + guessing relevant pairs.
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Importance values: complexity results

Biichi | Rabin | Streett Parity LTL
Val
or oablueem P NP coNP | € NP NcoNP | 2EXP
Usefulness P p
proglem NP Y Y NP 2EXP
O iam® | #P | #PNP | PP 4P 2EXP
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Importance values: complexity results

Biichi | Rabin | Streett Parity LTL
Val
or oablueem P NP coNP | € NPNcoNP | 2EXP
Usefulness P p
proglem NP Y Y NP 2EXP
O iam® | #P | #PNP | PP 4P 2EXP

Value problem: classical results for games
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Importance values: complexity results

Biichi | Rabin | Streett Parity LTL
Val
or oablueem P NP coNP | € NP NcoNP | 2EXP
Usefulness P p
proglem NP Y Y NP 2EXP
O iam® | #P | #PNP | PP 4P 2EXP

NP-completeness of the usefulness problem for Buchi conditions

« upper bound via guess-&-check method

nondeterministically guess a set C and check whether (C,s) is relevant
(with poly-time algorithm for Biichi games)

« NP-hardness via reduction from 3SAT
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Importance values: complexity results

Biichi | Rabin | Streett Parity LTL
Val
or oablueem P NP coNP | € NP NcoNP | 2EXP
Usefulness P p
proglem NP 25 Y NP 2EXP
O iam® | #P | #PNP | PP 4P 2EXP

¥ 0-completeness of the usefulness problem for Rabin conditions

« upper bound via guess-&-check method

nondeterministically guess a set C and check whether (C,s) is relevant
(with NP-oracle for Rabin games)

o YJ-hardness via reduction from dual of Y33SAT
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Probabilistic causality
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Probabilistic causality

. extensively studied in philosophy, but also in Al

Reichenbach (1956)
Suppes (1970)
and many more

Judea Pearl

Turing Award
Winner 2011

oy
2
MODEI.S e X /'/
ANp L\Tgﬁﬁgiymc,
ENcp
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Probabilistic causality

.. extensively studied in philosophy, but also in Al

Two main principles:

Temporal condition:

Probability-raising condition:
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Probabilistic causality

.. extensively studied in philosophy, but also in Al

Two main principles:

Temporal condition:
Causes occur before their effects.

Probability-raising condition:
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Probabilistic causality

.. extensively studied in philosophy, but also in Al

Two main principles:

Temporal condition:
Causes occur before their effects.
Probability-raising condition:

Pr( effect | cause ) > Pr( effect | - cause )
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Probabilistic causality

.. extensively studied in philosophy, but also in Al

Two main principles:

Temporal condition:
Causes occur before their effects.
Probability-raising condition:

Pr( effect | cause ) > Pr( effect | - cause )

equivalently: Pr( effect | cause ) > Pr( effect )
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Probabilistic causality

.. extensively studied in philosophy, but also in Al

Two main principles:

Temporal condition:
Causes occur before their effects.
Probability-raising condition:

Pr( effect | cause ) > Pr( effect | - cause )

probabilistic form of counterfactuality:
“effects are less likely if their causes do not occur”
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Probabilistic causality in operational models
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Probabilistic causality in operational models

Only very few research so far:

. formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]
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Probabilistic causality in operational models

Only very few research so far:

. formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

. formalization as probabilistic hyperproperties

in Markov chains [Abrahdm /Bonakdarpour, QEST'18]
in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA'20]
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Only very few research so far:

. formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

. formalization as probabilistic hyperproperties

in Markov chains [Abraham /Bonakdarpour, QEST'18]
in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA'20]

. cause-effect relations for regular causes and w-regular effects in
Markov chains [B./Funke/Jantsch/Piribauer/Ziemek, ATVA'21]
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Probabilistic causality in operational models

Only very few research so far:

. formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

. formalization as probabilistic hyperproperties
in Markov chains [Abraham /Bonakdarpour, QEST'18]

in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA'20]

. cause-effect relations for regular causes and w-regular effects in
Markov chains [B./Funke/Jantsch/Piribauer/Ziemek, ATVA'21]

« cause-effect relations for sets of states in Markov decision
processes [B./Funke/Piribauer/Ziemek, FoSSaCS'22]
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Probabilistic causality in operational models

Only very few research so far:

. formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

« cause-effect relations for sets of states in Markov decision

processes [B./Funke/Piribauer/Ziemek, FoSSaCS'22]
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Probabilistic causality in Markov chains
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Probabilistic causality in Markov chains

In what follows: M is a (discrete-time) Markov chain with
. finite state space S

- initial distribution ¢ : S — [0, 1] such that every state in S is
accessible from at least one initial state (i.e., a state s with «(s) > 0)

. a fixed nonempty set E of effect states
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Probabilistic causality in Markov chains

In what follows: M is a (discrete-time) Markov chain with
. finite state space S

- initial distribution ¢ : S — [0, 1] such that every state in S is
accessible from at least one initial state (i.e., a state s with «(s) > 0)

. a fixed nonempty set E of effect states

W.l.o.g. all E-states are terminal (i.e., do not have outgoing transitions).
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Probabilistic causality in Markov chains

In what follows: M is a (discrete-time) Markov chain with
. finite state space S

- initial distribution ¢ : S — [0, 1] such that every state in S is
accessible from at least one initial state (i.e., a state s with «(s) > 0)

. a fixed nonempty set E of effect states

W.l.o.g. all E-states are terminal (i.e., do not have outgoing transitions).
Pry(QE) effect probability in M

Prs(OE) effect probability from state s
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Probabilistic causality in Markov chains

In what follows: M is a (discrete-time) Markov chain with
. finite state space S

- initial distribution ¢ : S — [0, 1] such that every state in S is
accessible from at least one initial state (i.e., a state s with «(s) > 0)

. a fixed nonempty set E of effect states

W.l.o.g. all E-states are terminal (i.e., do not have outgoing transitions).

Prap(OQE) effect probability in M = Y «(s) - Prs(OE)

S€S
Prs(OE) effect probability from state s

210/359



PCTL-characterization of causality in MC
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PCTL-characterization of causality in MC

Let C a set of states with CNE = @.
C is called a (prima facie) cause for E if there exists p € ]0,1] s.t.

MEP(OE) and M k= VO(C = P,(0F))
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PCTL-characterization of causality in MC

Let C a set of states with CNE = @.
C is called a (prima facie) cause for E if there exists p € ]0,1] s.t.

MEP,(0E) and M | VO(C = Ps,(0F))
Prpm(OE) <p
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PCTL-characterization of causality in MC

Let C a set of states with CNE = @.
C is called a (prima facie) cause for E if there exists p € ]0,1] s.t.

MEP(OE) and M k= VO(C = P5,(0E))

Prp(OE) < p Prs(OE) > p
forallse C
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PCTL-characterization of causality in MC

Let C a set of states with CNE = @.
C is called a (prima facie) cause for E if there exists p € ]0,1] s.t.

MEP(OE) and M k= VO(C = P5,(0E))

Prpy(OE) < p Pry(OE) = p
Thus: forallse C

C cause for E iff Prpy(OE) < Pry(QE) forallse C
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PCTL-characterization of causality in MC

Let C a set of states with CNE = @.
C is called a (prima facie) cause for E if there exists p € ]0,1] s.t.

MEP(OE) and M k= VO(C = P5,(0E))

Prpy(OE) < p Pry(OE) = p
Thus: forallse C

C cause for E iff Prpy(OE) < Pry(QE) forallse C
iff  Pry(OE) < Pray(OQE|Os) forallse C
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PCTL-characterization of causality in MC

Let C a set of states with CNE = @.
C is called a (prima facie) cause for E if there exists p € ]0,1] s.t.

MEP(OE) and M k= VO(C = P5,(0E))

Prpy(OE) < p Pry(OE) = p
Thus: forallse C

C cause for E iff Prpy(OE) < Pry(QE) forallse C
iff  Pry(OE) < Pray(OQE|Os) forallse C

strict probability-raising condition

(elementwise for all C-states) 217 /359



Strict/global probability-raising causes in MC

Let C a set of states with CNE = @.
« C is a strict probability-raising (SPR) cause for E iff

Pry(OE) < Prp(OE|Qs) forallse C
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Strict/global probability-raising causes in MC

Let C a set of states with CNE = @.
« C is a strict probability-raising (SPR) cause for E iff

Pry(OE) < Prp(OE|Qs) forallse C
- C is a global probability-raising (GPR) cause for E iff
Pry(0) < Pru(0E|0C)
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Strict/global probability-raising causes in MC

Let C a set of states with CNE = @.
« C is a strict probability-raising (SPR) cause for E iff

Pry(OE) < Prp(OE|Qs) forallse C
- C is a global probability-raising (GPR) cause for E iff
Pry(0) < Pru(0E|0C)

plus some minimality constraint (omitted here)
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Strict/global probability-raising causes in MC

Let C a set of states with CNE = &.
« C is a strict probability-raising (SPR) cause for E iff
Pry(OE) < Prp(OE|Qs) forallse C
- C is a global probability-raising (GPR) cause for E iff
Pry(0) < Pru(0E|0C)
plus some minimality constraint (omitted here)
» Each SPR cause is a GPR cause.
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Strict/global probability-raising causes in MC

Let C a set of states with CNE = @.
« C is a strict probability-raising (SPR) cause for E iff

Pry(OE) < Prp(OE|Qs) forallse C
- C is a global probability-raising (GPR) cause for E iff
Pry(0) < Pru(0E|0C)
plus some minimality constraint (omitted here)
« Each SPR cause is a GPR cause.
. If C is a singleton then:
C is a SPR cause iff C is a GPR cause
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Example: PR cause in MC

/ S\LP/> MC M with unique initial state s
A’/g>@ 1 effect set £ = {e), &}
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Example: PR cause in MC

y — T3
;/ S\Lf/> MC M with unique initial state s
@A//g>@ {3 effect set £ = {e), &}

NI =

e %@ Pra(OF) = 141141 =
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Example: PR cause in MC

;/ S\LP/> MC M with unique initial state s
4//3>@ <& effect set E = {e1 e}

s ™ 4o Pru(0F) = 3+31+% =}
e @ C= {C17 C2}
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Example: PR cause in MC

— 3
;/ S\LP/> MC M with unique initial state s
@4//3>@ <& effect set E = {e1 e}
+l1,1 _ 1
B L o g o Pry(0F) = 3+33+% = 3
= @ C= {C17 C2}

- Cis not an SPR cause as Pr,(0E) = 1 <1 = Pry(OE)
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Example: PR cause in MC

— 3
;/ S\LP/> MC M with unique initial state s
@4//3>@ <& effect set E = {e1 e}
4111 1
S L Ug Az Pru(0E) = 3+33+3: = 2
= @ C= {C17 C2}

- Cis not an SPR cause as Pr,(0E) = 1 <1 = Pry(OE)

o Cis a GPR cause as

Pru(OE[0C) = 3 = % = § > 1 = Pru(0F)
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Example: PR cause in MC

2@ 4
2
é/@“ é?\%

©

MC M with unique initial state s

effect set E = {ey, &}
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Example: PR cause in MC

é/@\ﬁ MC M with unique initial state s
1 @4 & effect set E = {ey, &}
2 3/
© 4 Pru(OF) = Pr(0E) = 1

for each state s € {s1, 5, s3}
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Example: PR cause in MC

@\4 MC M with unique initial state s

D
@ @ effect set £ = {e), &}

@/ & \ Prp(OE) = Pry(OE) = 3

for each state s € {s1, 5, s3}

There is no GPR cause as for any C C {s1, s, s3}:
Pru(OE[OC) = § = Pra(0F)
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Example: PR cause in MC

@\4 MC M with unique initial state s

2, 2
‘/@\; ;Q\ effect set E = {ey, &}
© Pry(OF) = Pr(OF) = 1

for each state s € {s1, 5, s3}

There is no GPR cause as for any C C {s1, s, s3}:
Pru(OE[OC) = § = Pra(0F)

Well justified, as the events QE and ¢ C are stochastically
independent for any C.
231/359



Markov decision processes (MDP)

.. extension of Markov chains by nondeterministic choices ...
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Markov decision processes (MDP)

. finite state space S with initial distribution ¢ : S — [0, 1]
« finite set of action Act
« for each state s € S: ©) B,
ol L R
« Act(s): set of enabled ’ N
actions in state s K‘é k3 v
« for each action a € Act(s): O O OO0
distribution Ps, : S — [0,1]
for the a-successors of s
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Markov decision processes (MDP)

. finite state space S with initial distribution ¢ : S — [0, 1]

« finite set of action Act

« for each state s € S: ©) <

o{l @1 12
« Act(s): set of enabled % A
actions in state s %3 k3

« for each action a € Act(s): O O OO0
distribution Ps, : S — [0,1]

Scheduler (a.k.a. policy, adversary, strategy): resolves the nondeterminism

« selects distributions over enabled actions (might be history-dependent)

« induced stochastic process is a Markov chain (tree-like, possibly infinite)
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PR causes in MDPs

... generalize the definition of SPR and GPR causes for MDPs ...
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PR causes in MDPs

... generalize the definition of SPR and GPR causes for MDPs ...

Assumptions: given an MDP M with state space S and:

. fixed effect set E consisting of terminal states
(i.e., have no enabled action)
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PR causes in MDPs

... generalize the definition of SPR and GPR causes for MDPs ...

Assumptions: given an MDP M with state space S and:

. fixed effect set E consisting of terminal states
(i.e., have no enabled action)

« all states in S are reachable from at least one initial state
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PR causes in MDPs

... generalize the definition of SPR and GPR causes for MDPs ...

Assumptions: given an MDP M with state space S and:

. fixed effect set E consisting of terminal states
(i.e., have no enabled action)

« all states in S are reachable from at least one initial state

. all states in § from which E is not reachable are terminal
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PR causes in MCs (icpetition)

Let C a set of stateswith CNE=@. Cis a
« SPR cause for E iff for all s € C
Pr(OE) < Pry,(OE|Os)
« GPR cause for E iff
Pry(OE) < Pry, (OE|OC)

239 /359



PR causes in MCs (icpetition)
Let C a set of stateswith CNE=@. Cis a
« SPR cause for E iff for all s € C
Pr(OE) < Pry(OE|(—C)Us)
« GPR cause for E iff
Pry(OE) < Pry (OE|OC)
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PR causes in MDPs

Let C a set of stateswith CNE=@. Cis a
« SPR cause for E iff for all s € C and all schedulers o
Pri,(OE) < Pri(OE|(—C)Us)
« GPR cause for E iff for all schedulers o

Pri,(OE) < Pri,(OE|OC)

Pro,(...) = probability measure of the Markov chain
TMU+) =\ induced by scheduler o
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PR causes in MDPs

Let C a set of stateswith CNE=@. Cis a
« SPR cause for E iff for all s € C and all schedulers o
Pri,(QE) < Pri(OE|(—-C)Us) if Priy(—-C)Us)>0
« GPR cause for E iff for all schedulers o

P13, (OF) < Pro,(0E|OC) if Pr%,(0C) > 0
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Example: PR cause

in MDP

MDP M with unique initial state i
effect set E = {e}
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Example: PR cause

in MDP

MDP M with unique initial state i
effect set E = {e}
Is C = {c} a PR cause?
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Example: PR cause

in MDP

MDP M with unique initial state i
effect set E = {e}

Is C = {c} a PR cause?

No
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Example: PR cause

in MDP

MDP M with unique initial state i
effect set E = {e}

Is C = {c} a PR cause?

No

Consider the scheduler o that schedules 8 for the first visit of s and

a for the second visit of s.
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Example: PR cause in MDP

¥4 MDP M with unique initial state i

/ /> effect set E = {e}
w G2 Is C = {c} a PR cause?
O \7‘ (s No
©

Consider the scheduler o that schedules 8 for the first visit of s and
a for the second visit of s.

Pri(0E) = 31+2111 = 2
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Example: PR cause in MDP

¥4 MDP M with unique initial state i

/ /> effect set E = {e}
s 2 Is C = {c} a PR cause?
O \7’ (s No
©

Consider the scheduler o that schedules 8 for the first visit of s and
a for the second visit of s.

Pri(0F) = L1411l — 5 5 1 — P (OF|0c)
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Example: PR cause in MDP

MDP M with unique initial state i
effect set E = {e}
Is C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers
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Example: PR cause in MDP

® ¥ MDP M with unique initial state i

53 !
o 4/%3/> effect set E = {e}
s & Is C = {c} a PR cause?
O g 5y No, although PR condition holds for

all memoryless schedulers

Consider MR-scheduler o = 0, with a(s)(a) = A and o(s)(8) = 1-\.
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Example: PR cause in MDP

O ¥ MDP M with unique initial state i
Oyé/} effect set E = {e}
g }P@ Is C = {c} a PR cause?
O g L No, although PR condition holds for

all memoryless schedulers

Consider MR-scheduler o = 0, with a(s)(a) = A and o(s)(8) = 1-\.
P, (0E) = +Pr2(0F)
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Example: PR cause in MDP

O ¥ MDP M with unique initial state i
Oyé/} effect set E = {e}
g }P@ Is C = {c} a PR cause?
O g L No, although PR condition holds for

all memoryless schedulers

Consider MR-scheduler o = 0, with a(s)(a) = A and o(s)(8) = 1-\.
Pr5,(0E) = 1Pr2(OF) < Pr2(0F)
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Example: PR cause in MDP

O ¥ MDP M with unique initial state i
Oyé/} effect set E = {e}
g }P@ Is C = {c} a PR cause?
O g L No, although PR condition holds for

all memoryless schedulers

Consider MR-scheduler o = 0, with a(s)(a) = A and o(s)(8) = 1-\.
Pri,(OE) = 3-PrZ(OE) < PrI(OE) = Pr(QE)
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Example: PR cause in MDP

O ¥ MDP M with unique initial state i
Oyé/} effect set E = {e}
g }P@ Is C = {c} a PR cause?
O g L No, although PR condition holds for

all memoryless schedulers

Consider MR-scheduler o = 0, with a(s)(a) = A and o(s)(8) = 1-\.
Pr5,(0F) = LPr2(0E) < PrZ(0F) = Pr2(0F) = Priy( O | 0c)
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Example: PR cause in MDP

O ¥ MDP M with unique initial state i
Oyé/} effect set E = {e}
g }P@ Is C = {c} a PR cause?
O g L No, although PR condition holds for

all memoryless schedulers
Consider MR-scheduler o = 0, with a(s)(a) = A and o(s)(8) = 1-\.
Pri,(OE) = 3-PrZ(OE) < PrI(OE) = Pr(OE) = Pry(OE | Oc)

Consequence: Memory can be needed for refuting the PR condition!
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Example: PR cause in MDP

MDP M with unique initial state i

Q@
:{/FL)% effect set E = {e1, &}
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Example: PR cause in MDP

MDP M with unique initial state i

Q@
:{/FL)% effect set E = {e1, &}

= Is C = {c} a PR cause?
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Example: PR cause in MDP

MDP M with unique initial state i

r ®
/}’5‘,2&2 effect set E = {e, &}
= Is C = {c} a PR cause?

Z, Y No
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Example: PR cause in MDP

MDP M with unique initial state i

r ®
/}’5‘,2% effect set E = {e, &}
= Is C = {c} a PR cause?

)
5 2. NO
VRS

Consider the scheduler o that schedules a and B with probability 1/2
in state /.
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Example: PR cause in MDP

MDP M with unique initial state i

r ®
/}’5‘,2% effect set E = {e, &}
= Is C = {c} a PR cause?

)
5 2. NO
VRS

Consider the scheduler o that schedules a and B with probability 1/2
in state /.
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Example: PR cause in MDP

MDP M with unique initial state i

r ®
/}’5‘,2% effect set E = {e, &}
= Is C = {c} a PR cause?

Z, % No

Consider the scheduler o that schedules a and B with probability 1/2
in state /.

PAOE) = §+34} = § > § = Pi(0E|0c)
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Example: PR cause in MDP

MDP M with unique initial state i

r ®
/}’5‘,2% effect set E = {e, &}
= Is C = {c} a PR cause?

Y No, although PR condition holds for
all deterministic schedulers
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Example: PR cause in MDP

O
V NG

MDP M with unique initial state i
effect set E = {e, &}
Is C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the deterministic schedulers 0 and o that schedule a

resp. [ in state i.
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Example: PR cause in MDP

O
V NG

MDP M with unique initial state i
effect set E = {e, &}
Is C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the deterministic schedulers 0 and o that schedule a

resp. [ in state i.

o4 irrelevant for PR condition as state ¢ is not reachable
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Example: PR cause in MDP

o A ©) ‘ MDP M with unique initial state i
/[5‘22&2 effect set E = {e, &}
© © = Is C = {c} a PR cause?

%/5\1} No, although PR condition holds for
all deterministic schedulers

Consider the deterministic schedulers 0 and o that schedule a
resp. [ in state i.

o4 irrelevant for PR condition as state ¢ is not reachable

rm(0F) = 33 = § < 3 = Prii(0E|0c)
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Example: PR cause in MDP

O
V NG

MDP M with unique initial state i
effect set E = {e, &}
Is C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the deterministic schedulers 0 and o that schedule a

resp. [ in state i.

Consequence: Randomization needed for refuting the PR condition!
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Example: PR cause in MDP

xS ©) MDP M with unique initial state i
776{/[5‘22% effect set E = {e, &}
© © = Is C = {c} a PR cause?
;”L Yes !
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Example: PR cause in MDP

xS ©) MDP M with unique initial state i
77_:_/ (\,2/ 2.5 effect set E = {e, &}
@p £ [P
© = Is C = {c} a PR cause?
7\ Yes I

Let o be a scheduler with o(i)(a) = A and o(i)(8) = 1-\.
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Example: PR cause in MDP

xS ©) MDP M with unique initial state i
77_:_/ (\,2/ 2.5 effect set E = {e, &}
@p £ [P
© = Is C = {c} a PR cause?
7\ Yes I

Let o be a scheduler with o(i)(a) = A and o(i)(8) = 1-\.

If A =1 then o is irrelevant (as C is not reachable along o-paths).
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Example: PR cause in MDP

xS ©) MDP M with unique initial state i
77_:_/ (\,2/ 2.5 effect set E = {e, &}
@p £ [P
© = Is C = {c} a PR cause?
7\ Yes I

Let o be a scheduler with o(i)(a) = A and o(i)(8) = 1-\.

If A =1 then o is irrelevant (as C is not reachable along o-paths).Otherwise:

Pri(0E) = ta+1l@a1-)) =1
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Example: PR cause in MDP

xS ©) MDP M with unique initial state i
7 (\,2/ 2.5 effect set E = {e, &}
@p £ [P
© = Is C = {c} a PR cause?
7\ Yes I

Let o be a scheduler with o(i)(a) = A and o(i)(8) = 1-\.

If A =1 then o is irrelevant (as C is not reachable along o-paths).Otherwise:

Pry(0F) = IA+33(1-0) = § < = Prg(0E | 0c)
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Algorithmic problems
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Algorithmic problems

Checking cause-effect relationships:

Finding good causes for given effects:
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Algorithmic problems

Checking cause-effect relationships:

Finding good causes for given effects: Given M, E, determine a
PR cause C that is optimal w.r.t. to some coverage criterion.
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Algorithmic problems

Checking cause-effect relationships: Given M, E, C, check whether
« Cis an SPR cause for E

« Cis a GPR cause for E

Finding good causes for given effects: Given M, E, determine a
PR cause C that is optimal w.r.t. to some coverage criterion.
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Algorithmic problems

Checking cause-effect relationships: Given M, E, C, check whether
« Cis an SPR cause for E
MC:  poly-time using standard methods for (conditional) probabilities

« Cis a GPR cause for E
MC:  poly-time using standard methods for (conditional) probabilities

Finding good causes for given effects: Given M, E, determine a
PR cause C that is optimal w.r.t. to some coverage criterion.
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Algorithmic problems

Checking cause-effect relationships: Given M, E, C, check whether
« Cis an SPR cause for E
MC:  poly-time using standard methods for (conditional) probabilities
MDP: poly-time by statewise checking of the SPR condition

« Cis a GPR cause for E
MC:  poly-time using standard methods for (conditional) probabilities

Finding good causes for given effects: Given M, E, determine a
PR cause C that is optimal w.r.t. to some coverage criterion.
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Algorithmic problems

Checking cause-effect relationships: Given M, E, C, check whether
« Cis an SPR cause for E

MC:  poly-time using standard methods for (conditional) probabilities
MDP: poly-time by statewise checking of the SPR condition

« Cis a GPR cause for E
MC:  poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: Given M, E, determine a
PR cause C that is optimal w.r.t. to some coverage criterion.

278 /359



Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:
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Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

. with a single initial state and without end components

i.e., under all schedulers a terminal state will eventually be reached a.s.

280 /359



Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

. with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

« if a cause candidate C is given: 4 types of terminal states

« covered effect states: only accessible via C (TP)
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Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

. with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

« if a cause candidate C is given: 4 types of terminal states
« covered effect states: only accessible via C (TP)
« uncovered effect states: not accessible from C (FN)
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Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

. with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

« if a cause candidate C is given: 4 types of terminal states
« covered effect states: only accessible via C (TP)
« uncovered effect states: not accessible from C (FN)
~ noneffect terminal states after C: only accessible via C (FP)
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Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

. with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

« if a cause candidate C is given: 4 types of terminal states

« covered effect states: only accessible via C (TP)
« uncovered effect states: not accessible from C (FN)
~ noneffect terminal states after C: only accessible via C (FP)
« other noneffect terminal states: not accessible from C (TN)

284 /359



Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

. with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

« if a cause candidate C is given: 4 types of terminal states

« covered effect states: only accessible via C (TP)
« uncovered effect states: not accessible from C (FN)
~ noneffect terminal states after C: only accessible via C (FP)
« other noneffect terminal states: not accessible from C (TN)

and each ¢ € C has a single action with terminal successors

(a covered effect state with prob. p. = Pr™"(QE) and a noneffect state with prob. 1—p.)
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Model transformation

Structure of the transformed MDP @

for fixed effect set E and
\
Zig)d Y

cause candidate C:
N ©

/l —Pc TC'—
Efect

Cov

TP
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Checking the SPR condition



Checking the SPR condition

Task: Given M, E, C, check whether C is an SPR cause.
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Checking the SPR condition

Task: Given M, E, C, check whether C is an SPR cause.

Observation:

C is an SPR cause iff {c} is an SPR cause for each state c € C
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Checking the SPR condition

Task: Given M, E, C, check whether C is an SPR cause.

Observation:

C is an SPR cause iff {c} is an SPR cause for each state c € C

Existence of SPR or GPR causes:
there is an SPR cause

iff there is a singleton SPR cause
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Checking the SPR condition

Task: Given M, E, C, check whether C is an SPR cause.

Observation:

C is an SPR cause iff {c} is an SPR cause for each state c € C

Existence of SPR or GPR causes:
there is an SPR cause
iff there is a singleton SPR cause
iff there is a singleton GPR cause

iff there is a GPR cause
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Checking the SPR condition for singletons

Task: Given M, E, ¢, check whether {c} is an SPR cause.
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Checking the SPR condition for singletons

Task: Given M, E, ¢, check whether {c} is an SPR cause.

Let N be the transformed MDP @

where p. = Pri{ (OE). ﬁrﬁ\/\\}
b
~“")(‘. Y
+N @

1R AT
/K

TP
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Checking the SPR condition for singletons

Task: Given M, E, ¢, check whether {c} is an SPR cause.
Let N be the transformed MDP

h P min (<>E) @
where pc = Frpq . : ﬁrﬁ\/\\}
3
S ¥
TN @

4—&/%
pe = Pr3y.( O | 0¢)
for each scheduler o in N

that reaches ¢ TP

294 /359



Checking the SPR condition for singletons

Task: Given M, E, ¢, check whether {c} is an SPR cause.

Let N be the transformed MDP @
where p. = Pri{ (OE). ﬁrﬁ\/\\}
Let ¢ = Pry®™(OE).

b

'—VIMV)C Y

+N @

1R AT
/K

TP
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Checking the SPR condition for singletons

Task: Given M, E, ¢, check whether {c} is an SPR cause.

Let A be the transformed MDP @

where p. = Pri{ (OE). ﬁrﬁ\/\\}
—_ max

Let ¢ = Pry®™(OE). - o K&

If ¢ < pc: SPR condition holds. ‘Mnc v

If ¢ > pc: SPR condition does not hold. T ©

1 AT
/K

TP
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Checking the SPR condition for singletons

Task: Given M, E, ¢, check whether {c} is an SPR cause.
Let N be the transformed MDP

where p. = Pr.',{‘,i,':c(OE). [hfﬁ\/\\}
—_ max
Let g = Pri?*(OE). - 7 \
If ¢ < pc: SPR condition holds. ‘Mnc

—

&
If ¢ > pe: SPR condition does not hold. T ©

If g = pe: 4—&/K
SPR condition holds iff M has no

e
scheduler maximizing the effect probability

that reaches ¢ TP
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Checking the SPR condition for singletons

Task: Given M, E, ¢, check whether {c} is an SPR cause.

Let N be the transformed MDP %2’;
where p. = Pri{ (OE). 4%
Let ¢ = Pry®™(OE). 3 £

If ¢ < pc: SPR condition holds.
If ¢ > p.: SPR condition does not hold.
If g = pe:

SPR condition holds iff M has no

scheduler maximizing the effect probability
that reaches ¢
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Checking the GPR condition



Checking the GPR condition

After the model transformation:

C violates the GPR condition iff { there is an MR-scheduler

refuting the GPR condition
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Checking the GPR condition

After the model transformation:

C violates the GPR condition iff { there is an MR-scheduler

refuting the GPR condition

Main idea:
use a constraint system with variables

xs for the expected frequencies of states s € S, and
Xs,a for the expected frequencies of state-action pairs (s, c)

under such an MR-scheduler violating the GPR condition
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Checking the GPR condition

« linear balance equations for the expected frequencies:
Xt = Y Xta = X Xsa-P(s,a,t) for each non-initial state t
a s,a

Xp = Yo Xspa = I X, P(s,a,5)+1 for the initial state sp
a s,
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Checking the GPR condition

« linear balance equations for the expected frequencies:
Xt = Y Xta = X Xsa-P(s,a,t) for each non-initial state t
Xep = Z::xs(,,a = :’z:xs,a - P(s,a,s0) + 1 for the initial state s
e quadratic constraint for the violation of the GPR-condition:
xc-xen 2 (1=xc) - X xs-ps
seC
where xc = 3° xs (probability for reaching C), ps =PrMr(¢E) and

seC

xegy = Y xs (prob. for false negatives, i.e., effect without cause)
seFN
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Checking the GPR condition

« linear balance equations for the expected frequencies:
Xt = Y Xta = X Xsa-P(s,a,t) for each non-initial state t
a s,a
a s,
e quadratic constraint for the violation of the GPR-condition:

xc-xen 2 (1=xc) - X xs-ps
seC

where xc = 3° xs (probability for reaching C), ps =PrMr(¢E) and

seC
xegy = Y xs (prob. for false negatives, i.e., effect without cause)
seFN
E Xs*Ps
Pr(QE|OC) = ECT
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Checking the GPR condition

« linear balance equations for the expected frequencies:
Xt = Y Xta = X Xsa-P(s,a,t) for each non-initial state t
a s,a
a s,
e quadratic constraint for the violation of the GPR-condition:

xc-xen 2 (1=xc) - X xs-ps
seC

where xc = 3° xs (probability for reaching C), ps =PrMr(¢E) and

seC
xegy = Y xs (prob. for false negatives, i.e., effect without cause)
seFN
E Xs*Ps
Pr(OE[0C) = €5— and Pr(0E|-0C) = 1"_F—gc
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Checking the GPR condition

« linear balance equations for the expected frequencies:
Xt = Y Xta = X Xsa-P(s,a,t) for each non-initial state t
a s,a

« s,

e quadratic constraint for the violation of the GPR-condition:

xc-xen 2 (1=xc) - X xs-ps
seC

where xc = 3° xs (probability for reaching C), ps =PrMr(¢E) and
seC

xegy = Y xs (prob. for false negatives, i.e., effect without cause)
seFN

o linear non-negativity and positivity constraints:

xc >0 and xsq >0 for all state-action pairs
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Algorithmic problems

Checking cause-effect relationships: Given M, E, C, check whether

« Cis a GPR cause for E

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)
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Algorithmic problems

Finding good causes for given effects: Given M, E, determine a PR
cause C that is optimal w.r.t. to some coverage criterion.
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Quality measures for causes
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Quality measures for causes

« for fixed effect set E and GPR cause C

- take inspiration of quality measures used in statistical analysis
for a good coverge of effect scenarios
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Quality measures for causes

« for fixed effect set E and GPR cause C

- take inspiration of quality measures used in statistical analysis
for a good coverge of effect scenarios

« algorithmic problems:

~ compute quality measure for fixed effect and GPR cause

» find optimal GPR cause for fixed effect set
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Quality measures for causes

precision (accuracy for “(true or false) positives”)

prec(C) = ir;fPr‘,’w( OE | 0C) TPT+PFP
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Quality measures for causes

precision (accuracy for “(true or false) positives”)

prec(C) = ir;fPr‘,’w( OE | 0C) TPT+PFP

recall (sensitivity):

recall(C) = inf Prs ( OC | OF ) N
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Quality measures for causes

precision (accuracy for “(true or false) positives”)

prec(C) = ir;fPr‘,’w( OE | 0C) TPT+PFP
recall (sensitivity):
recall(C) = inf Pr3,( OC | OF ) N

coverage ratio (fraction of covered and uncovered effects)

. P (OCAQE TP
covrat(C) = u;f Pry((-C)UE N
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Quality measures for causes

precision (accuracy for “(true or false) positives”)

prec(C) = ir;fPr‘,’w( OE | 0C) TPT+PFP
recall (sensitivity):
recall(C) = inf Pr3,( OC | OF ) N

coverage ratio (fraction of covered and uncovered effects)

. P (OCAQE TP
covrat(C) = u;f Pry((-C)UE N

f-score (harmonic mean of precision and recall)

.. prec’(C) - recall’(C)
fscore(C) = inf prec’(C) + recall°(C)
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Quality measures for causes

precision (accuracy for “(true or false) positives”)  already taken into account

prec(C) — ianr‘/’w( OE | oC ) in the GPR condition;

precision says nothing

_ about coverage
recall (sensitivity):

recall(C) = inf Prs ( OC | OF ) N

coverage ratio (fraction of covered and uncovered effects)
. P (OCAQE TP
covrat(C) = u;f Py (-C)UE EN

f-score (harmonic mean of precision and recall)

. . prec’(C) - recall’(C)
fscore(C) = inf prec’(C) + recall°(C)
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Quality measures for causes

precision (accuracy for “(true or false) positives”)

prec(C) = ir;fPr‘/’w( QOE | 0C)

computing precision & recall:

via standard techniques for

recall (sensitivity): condition prob. in MDPs

recall(C) = inf Priy,( OC | OFE )
g
coverage ratio (fraction of covered and uncovered effects)

. P (OCAQE TP
covrat(C) = u;f Pry((-C)UE N

f-score (harmonic mean of precision and recall)

. . prec’(C) - recall’(C)
fscore(C) = inf prec’(C) + recall°(C)
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Quality measures for causes

precision (accuracy for “(true or false) positives”)
— a
p reC(C) o ";f PrM( OF l 0C ) computing precision & recall:

via standard techniques for

recall (sensitivity): condition prob. in MDPs

recall(C) = ir;fPrjA( OC | OF)

coverage ratio (fraction of covered and uncovered effects)

. Priy(OCAQE
covrat(C) = |2f Pry((FC)UE computing covrat & f-score:

via reduction to SSPP

f-score (harmonic mean of precision and recall) (stoch. shortest path problem)

. . prec’(C) - recall’(C)
fscore(C) = inf prec’(C) + recall°(C)
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Coverage ratio and f-score
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Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

. PrU(OCAQE) . . TP°
covrat(C) = "clf Pry((-C)UE) — '2fW

f-score (harmonic mean of precision and recall)

it prec®(C) - recall’(C)

fscore(C) = 5 prec’(C) + recall’ (C)
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Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

. Py (OCAQE) . . TP°
covrat(C) = ";f Pry((-C)UE) — '2fW

f-score (harmonic mean of precision and recall)

FP? 4+ FN°

fscore(C) = XL—|-2 where X = sup ——=57

2

321/359



Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

. Py (OCAQE) . . TP°
covrat(C) = n;f Pry((-C)UE) — '2fW

f-score (harmonic mean of precision and recall)

FP? 4+ FN°

fscore(C) = XL—|-2 where X = sup ——=57

After model transformation for fixed effect and GPR cause:
« TP, FP, FN, TN are terminal states
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Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

. Py (OCAQE) . . TP°
covrat(C) = n;f Pry((-C)UE) — '2fW

f-score (harmonic mean of precision and recall)

_ 2 _ FP? + FN?
fscore(C) = X Where X = SUp ——po
After model transformation for fixed effect and GPR cause:
« TP, FP, FN, TN are terminal states
Pre, (OU

« recall and f-score can be derived from inf resp. sup of ﬁﬁo_v%

quotient of probabilities for reaching disjoint sets of terminal states
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After model transformation ...
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After model transformation ...

@ coverage ratio
fraction of covered and uncovered effects
. TP?
@ covrat(C) = |2f N
N ©
4'&/%
effect
Co Vv

TP
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After model transformation ...

@ coverage ratio
‘ fraction of covered and uncovered effects

@ 1 TN covrat(C) = mf -IIZ-E"
TN ©

4-9/2\\
‘«F‘?
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After model transformation ...

®

@ \

N

©

oK

e

TN

e
TP

coverage ratio
fraction of covered and uncovered effects

— inf IPZ
covrat(C) = |2f ENC

f-score
harmonic mean of precision & recall

fscore(C) = X%

where X = sup w

o
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Covratio and f-score via SSPP

®

Given MDP M

- without end components
- U, V disjoint sets of terminal states

: « ¢ Pry,(0U)
Goal: compute n;f B (O)

(for sup analogous)
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Covratio and f-score via SSPP

Ry @ vtk Given MDP M
- without end components
- U, V disjoint sets of terminal states
. . Pry,(OU)
b Goal: compute n;f ﬁﬁm

O,
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Covratio and f-score via SSPP

ﬁ@

O,

rtsd-

N

&,

Given MDP M

- without end components
- U, V disjoint sets of terminal states

: « ¢ Pry,(0U)
Goal: compute n;f B (O)

Let A be the transformed weighted MDP
weight 1 for U, weight 0 for all other states
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Covratio and f-score via SSPP

Ry @ sk Given MDP M
(\ - without end components

- U, V disjoint sets of terminal states

. . Pry,(OU)
——Mm\VE)
\ Goal: compute |2f B (O)
Let A be the transformed weighted MDP
@ weight 1 for U, weight 0 for all other states
stochastic process 1. generate sample run until reaching a terminal state s
initially: w=0 2. If se V then return w and halt.

If s e U then w := w+1 and go to 1.
If s e T (other terminal state) then go to 1.
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Covratio and f-score via SSPP

Ry @ sk Given MDP M
(\ - without end components

- U, V disjoint sets of terminal states

. ¢ Pri(OU)
- —M\V©Y)
\ Goal: compute |2f B (O)
Let A be the transformed weighted MDP
@ weight 1 for U, weight 0 for all other states
stochastic process 1. generate sample run until reaching a terminal state s
initially: w=0 2. If se V then return w and halt.
expected outcome: If se U then w:= w+1 and go to 1.

1%(%% If s e T (other terminal state) then go to 1.
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Covratio and f-score via SSPP

Ry @ sk Given MDP M

- without end components
- U, V disjoint sets of terminal states
. . Pry,(OU)
b Goal: compute |2f ﬁﬁm
Let A be the transformed weighted MDP
@ weight 1 for U, weight 0 for all other states
il;f g—;%‘%g—‘% = ir;f Ef/( “accumulated weight until reaching V")

stochastic shortest path in &
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Quality measures for causes

« Three measures for the “degree of coverage”:
recall, coverage ratio, and f-score

« computable in poly-time for fixed effect E and GPR cause C:

« recall: via standard techniques for conditional probabilities in MDPs

« coverage ratio and f-score: via polynomial reduction to SSPP
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Quality measures for causes

« Three measures for the “degree of coverage”:
recall, coverage ratio, and f-score
« computable in poly-time for fixed effect E and GPR cause C:
« recall: via standard techniques for conditional probabilities in MDPs

« coverage ratio and f-score: via polynomial reduction to SSPP

« optimalization problem:
given effect set E, find an SPR or a GPR cause C with

« maximal recall
+ maximal coverage ratio

+ maximal f-score
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Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):
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Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):
« in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)
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Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):
« in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

« recall-optimal = covratio-optimal: computable in poly-time
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Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):
«~ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

« recall-optimal = covratio-optimal: computable in poly-time

“canonical SPR cause”: C = union of all singleton SPR causes
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Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):
«~ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

« recall-optimal = covratio-optimal: computable in poly-time

“canonical SPR cause”: C = union of all singleton SPR causes

« recall-optimal: obvious as any SPR is a subset of C
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Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):
«~ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

« recall-optimal = covratio-optimal: computable in poly-time

“canonical SPR cause”: C = union of all singleton SPR causes

« recall-optimal: obvious as any SPR is a subset of C

IP TP e _ TP
FN > FN’ FN+TP

TP’
FN'+TP’

« covratio-opt = recall-opt: < <
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Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):
« in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:
« recall-optimal = covratio-optimal: computable in poly-time
« f-score optimal causes:

MC: in poly-time via reduction to SSPP in MDPs
MDP: in exp-time via reduction to SSP-games
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F-score optimal SPR cause in MC

O
W

MC M
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F-score optimal SPR cause in MC

C={cd,..}
set of states ¢ with

pe = Pro(OE) > Praq(0E)

MC M
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F-score optimal SPR cause in MC

MDP N C={cd,..}

set of states ¢ with

pe = Pro(OE) > Praq(0E)

nondeterministic choice in C-states

B action a: "“c selected for SPR cause”
O o < move with prob. p. to new effect state eff
q with prob. 1—p. to a terminal non-effect state
- Cﬂ
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F-score optimal SPR cause in MC

C={cd,..}
set of states ¢ with

pe = Pro(OE) > Praq(0E)

MDP N

nondeterministic choice in C-states

B action a: "“c selected for SPR cause”
O o < move with prob. p. to new effect state eff
q with prob. 1—p. to a terminal non-effect state

action : “c not selected for SPR cause”

o Cﬂ

Akon é
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F-score optimal SPR cause in MC

QAGkon é TP

C={cd,..}
set of states ¢ with
pe = Pro(OE) > Pra(0E)

MDP N

nondeterministic choice in C-states

action a: "“c selected for SPR cause”
move with prob. p. to new effect state eff
with prob. 1—p. to a terminal non-effect state

action : “c not selected for SPR cause”

fscore(C) = XC2_+§ where X¢ = mﬁ—'p"'c:—PC
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F-score optimal SPR cause in MC

C={cd,..}
set of states ¢ with

pe = Pro(OE) > Praq(0E)

MDP N

nondeterministic choice in C-states

action a: "“c selected for SPR cause”
move with prob. p. to new effect state eff
with prob. 1—p. to a terminal non-effect state

action : “c not selected for SPR cause”

reset transitions from TP, FN, FP

348/359



F-score optimal SPR cause in MC

C={cd,..}
set of states ¢ with
pe = Pro(OE) > Pra(OE)

MDP N

nondeterministic choice in C-states

action a: “c selected for SPR cause”
move with prob. p. to new effect state eff
with prob. 1—p. to a terminal non-effect state

action : “c not selected for SPR cause”
reset transitions from TP, FN, FP

weight 1 for FN and FP
weight 0 for all other states
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F-score optimal SPR cause in MC

C={cd,..}
set of states ¢ with
pe = Pro(OE) > Pra(OE)

MDP N

nondeterministic choice in C-states

action a: "“c selected for SPR cause”
move with prob. p. to new effect state eff
with prob. 1—p. to a terminal non-effect state

action : “c not selected for SPR cause”
reset transitions from TP, FN, FP

weight 1 for FN and FP
weight 0 for all other states

— 2 — i ;
max fscore(C) = x5 Wwhere X = EJ"(weight)
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Summary: algorithmic problems for PR causes
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Summary: algorithmic problems for PR causes

Results on strict and global probability-raising causality in Markov
chains and MDPs (with fixed effect set E):

For fixed set C:

checking computing quality measures
PR condition (recall, coverage ratio, f-score)
SPR eP poly-time
GPR MDP: ¢ PSPACE sl il

MC: eP
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Summary: algorithmic problems for PR causes

Results on strict and global probability-raising causality in Markov
chains and MDPs (with fixed effect set E):

Finding optimal causes and related threshold problems:

covratio-optimal : threshold
. f-score-optimal
= recall-optimal problem

MDP: poly-space f-score threshold problem

SPR poly-time _ . MDP: € NP ncoNP
MC: poly-time MC: <P
GPR Sl MDP: € PSPACE

MC: NP-complete
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Conclusions
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Conclusions

part 1. notions of causality and responsibility in TS
« forward causality
% necessary and sufficient causes (formalization in CTL*)

% counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)

o backward causality
* game-based definition of strategic and causal responsibility
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Conclusions

part 1. notions of causality and responsibility in TS
« forward causality

% necessary and sufficient causes (formalization in CTL*)

% counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)
o backward causality

* game-based definition of strategic and causal responsibility
e measures for the importance of states on temporal properties

* degree of responsibility for the satisfaction of properties:
mutation- or game-based definition via size of smallest switching pairs
* Shapley values to measure the importance of states on the truth of path formulas
— quantitative version of forward responsibility
— analogous for strategic backward responsibility, but unclear for causal backward resp.
— more difficult for branching-time logics ~ [Mascle et al, LICS'21]
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Conclusions

part 1. notions of causality and responsibility in TS

« forward causality
% necessary and sufficient causes (formalization in CTL*)
% counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)
o backward causality
* game-based definition of strategic and causal responsibility

e measures for the importance of states on temporal properties

* degree of responsibility for the satisfaction of properties:
mutation- or game-based definition via size of smallest switching pairs

* Shapley values to measure the importance of states on the truth of path formulas

o Aumann-Shapley values for models with continuous parameters

e.g., to measure the impact of probability parameters in parametric Markov chains

on reachability probabilities or expected costs
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Conclusions

part 1. notions of causality and responsibility in TS

« forward causality
% necessary and sufficient causes (formalization in CTL*)

% counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)

o backward causality
* game-based definition of strategic and causal responsibility

» measures for the importance of states on temporal properties

part 2: probébilistic causality in Markovian models

o MDP-formalization of the PR condition Pr(effect|cause) > Pr(effect|— cause)

e many open questions: path events for causes and effects, other quality
measures, backward causality, actionability, ...
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