
From verification to
causality-based explications

Christel Baier
TU Dresden

Joint work with:

Clemens Dubslaff
Florian Funke
Stefan Kiefer

Simon Jantsch
Rupak Majumdar
Corto Mascle

Jakob Piribauer
Robin Ziemek

From verification to explications
Classical verification task:

given: a system modelMMM and a specification ϕϕϕ

question: doesMMM satisfy ϕϕϕ?

answer:

↗
mathematical proof

or certificate

↖
counterexample

Explication task (in the verification context):

• what causes the specification to hold for the full model ?

• who is responsible for a requirement violation ? and to which degree?

• if a bad behavior occurs, what has caused the violation of the specification ?

2 / 359

From verification to explications
Classical verification task:

given: a system modelMMM and a specification ϕϕϕ

question: doesMMM satisfy ϕϕϕ?

answer: yes or no

↗
mathematical proof

or certificate

↖
counterexample

Explication task (in the verification context):

• what causes the specification to hold for the full model ?

• who is responsible for a requirement violation ? and to which degree?

• if a bad behavior occurs, what has caused the violation of the specification ?

3 / 359

From verification to explications
Classical verification task:

given: a system modelMMM and a specification ϕϕϕ

question: doesMMM satisfy ϕϕϕ?

answer: yes or no

↗
mathematical proof

or certificate

↖
counterexample

Explication task (in the verification context):

• what causes the specification to hold for the full model ?

• who is responsible for a requirement violation ? and to which degree?

• if a bad behavior occurs, what has caused the violation of the specification ?

4 / 359

From verification to explications
Classical verification task:

given: a system modelMMM and a specification ϕϕϕ

question: doesMMM satisfy ϕϕϕ?

answer: yes or no

↗
mathematical proof

or certificate

↖
counterexample

Explication task (in the verification context):

• what causes the specification to hold for the full model ?

• who is responsible for a requirement violation ? and to which degree?

• if a bad behavior occurs, what has caused the violation of the specification ?

5 / 359

From verification to explications
Classical verification task:

given: a system modelMMM and a specification ϕϕϕ

question: doesMMM satisfy ϕϕϕ?

answer: yes or no

↗
mathematical proof

or certificate

↖
counterexample

Explication task (in the verification context):

... should provide deeper insights why the specification holds or not

• what causes the specification to hold for the full model ?

• who is responsible for a requirement violation ? and to which degree?

• if a bad behavior occurs, what has caused the violation of the specification ?

6 / 359

From verification to explications
Classical verification task:

given: a system modelMMM and a specification ϕϕϕ

question: doesMMM satisfy ϕϕϕ?

answer: yes or no

↗
mathematical proof

or certificate

↖
counterexample

Explication task (in the verification context):

• what causes the specification to hold for the full model ?

• who is responsible for a requirement violation ? and to which degree?

• if a bad behavior occurs, what has caused the violation of the specification ?
7 / 359

From verification to explications
Classical verification task:

given: a system modelMMM and a specification ϕϕϕ

question: doesMMM satisfy ϕϕϕ?

answer: yes or no

↗
mathematical proof

or certificate

↖
counterexample

Explication task (in the verification context):

• what causes the specification to hold or not?

• who is responsible for a requirement violation ? and to which degree?

• if a bad behavior occurs, what has caused the violation of the specification ?
“causa

lity meets verifica
tion”

8 / 359

Causality

• long-standing discussion in philosophy

David Hume

(philosopher, 1711-1776)

David K. Lewis

(philosopher, 1941-2001)

and many more ...

painting from
Allan Ramsay

By Source, Fair use,
https://en.wikipedia.org/w/index.php?curid=58724625

9 / 359

Causality

• long-standing discussion in philosophy, but also AI

Joseph Halpern

Gödel Prize 1997
Dijkstra Prize 2009

Judea Pearl

Turing Award
Winner 2011

©CC BY-SA 2.0 fr
Joe Halpern at EPFL in June 2008

taken from Judea Pearl’s homepage
UCLA Cognitive Systems Laboratory

10 / 359

Various forms of causality

⋆ actual/specific vs general/type causes
actual cause is a factual event CCC that causes the effect EEE

general cause: e.g. “sweets cause obesity”

⋆ backward vs forward causality-based reasoning
backward: what has caused an observed effect EEE in a given event sequence?

forward: what can cause an event EEE in a given world model?

⋆ counterfactual vs necessary vs sufficient cause-effect relations
counterfactual: if CCC would not have happened, then EEE would not have occured

necessary: if EEE occurs then CCC must have happened before

sufficient: if CCC happens then always EEE will occur somewhen later

⋆ deterministic vs probabilistic causes, and many more ...

11 / 359

Various forms of causality

⋆ actual/specific vs general/type causes
actual cause is a factual event CCC that causes the effect EEE

general cause: e.g. “sweets cause obesity”

⋆ backward vs forward causality-based reasoning
backward: what has caused an observed effect EEE in a given event sequence?

forward: what can cause an event EEE in a given world model?

⋆ counterfactual vs necessary vs sufficient cause-effect relations
counterfactual: if CCC would not have happened, then EEE would not have occured

necessary: if EEE occurs then CCC must have happened before

sufficient: if CCC happens then always EEE will occur somewhen later

⋆ deterministic vs probabilistic causes, and many more ...

12 / 359

Various forms of causality

⋆ actual/specific vs general/type causes
actual cause is a factual event CCC that causes the effect EEE

general cause: e.g. “sweets cause obesity”

⋆ backward vs forward causality-based reasoning
backward: what has caused an observed effect EEE in a given event sequence?

forward: what can cause an event EEE in a given world model?

⋆ counterfactual vs necessary vs sufficient cause-effect relations
counterfactual: if CCC would not have happened, then EEE would not have occured

necessary: if EEE occurs then CCC must have happened before

sufficient: if CCC happens then always EEE will occur somewhen later

⋆ deterministic vs probabilistic causes, and many more ...

13 / 359

Various forms of causality

⋆ actual/specific vs general/type causes
actual cause is a factual event CCC that causes the effect EEE

general cause: e.g. “sweets cause obesity”

⋆ backward vs forward causality-based reasoning
backward: what has caused an observed effect EEE in a given event sequence?

forward: what can cause an event EEE in a given world model?

⋆ counterfactual vs necessary vs sufficient cause-effect relations
counterfactual: if CCC would not have happened, then EEE would not have occured

necessary: if EEE occurs then CCC must have happened before

sufficient: if CCC happens then always EEE will occur somewhen later

⋆ deterministic vs probabilistic causes, and many more ...

14 / 359

Various forms of causality

⋆ actual/specific vs general/type causes
actual cause is a factual event CCC that causes the effect EEE

general cause: e.g. “sweets cause obesity”

⋆ backward vs forward causality-based reasoning
backward: what has caused an observed effect EEE in a given event sequence?

forward: what can cause an event EEE in a given world model?

⋆ counterfactual vs necessary vs sufficient cause-effect relations
counterfactual: if CCC would not have happened, then EEE would not have occured

necessary: if EEE occurs then CCC must have happened before

sufficient: if CCC happens then always EEE will occur somewhen later

⋆ deterministic vs probabilistic causes, and many more ...
15 / 359

Causality in the verification context

• program slicing [Weiser’79]

• causality-based explanations of counterexamples
⋆ counterfactual reasoning with distance metrics [Groce et al’06]

⋆ identification of “critical state-variable pairs” in cex [Beer et al’09]

⋆ event order logic for causal dependencies in cex [Leitner-Fischer/Leue’13]

• coverage and vacuity [Chockler et al’01, Beer et al’01, Kupferman/Vardi’03]

study mutations of system models or specifications

• causality and responsibility in operational models
⋆ cause-effect relations [Cho./Hal./Kup.’08, B./Fun./Maj.’21, B./Fun./Pir./Zie.’22]

⋆ quantitative measures for the relevance of states
[Chockler/Halpern/Kupf.’08, B./Funke/Maj.’21, Mascle et al’21]

• causality-based verification [Kupriyanov/Finkbeiner’13]

proof rules for stepwise cause-effect reasoning

16 / 359

Causality in the verification context

• program slicing [Weiser’79]

• causality-based explanations of counterexamples
⋆ counterfactual reasoning with distance metrics [Groce et al’06]

⋆ identification of “critical state-variable pairs” in cex [Beer et al’09]

⋆ event order logic for causal dependencies in cex [Leitner-Fischer/Leue’13]

• coverage and vacuity [Chockler et al’01, Beer et al’01, Kupferman/Vardi’03]

study mutations of system models or specifications

• causality and responsibility in operational models
⋆ cause-effect relations [Cho./Hal./Kup.’08, B./Fun./Maj.’21, B./Fun./Pir./Zie.’22]

⋆ quantitative measures for the relevance of states
[Chockler/Halpern/Kupf.’08, B./Funke/Maj.’21, Mascle et al’21]

• causality-based verification [Kupriyanov/Finkbeiner’13]

proof rules for stepwise cause-effect reasoning

which program statements affect the values of variables
at a certain program location?

17 / 359

Causality in the verification context

• program slicing [Weiser’79]

• causality-based explanations of counterexamples
⋆ counterfactual reasoning with distance metrics [Groce et al’06]

⋆ identification of “critical state-variable pairs” in cex [Beer et al’09]

⋆ event order logic for causal dependencies in cex [Leitner-Fischer/Leue’13]

• coverage and vacuity [Chockler et al’01, Beer et al’01, Kupferman/Vardi’03]

study mutations of system models or specifications

• causality and responsibility in operational models
⋆ cause-effect relations [Cho./Hal./Kup.’08, B./Fun./Maj.’21, B./Fun./Pir./Zie.’22]

⋆ quantitative measures for the relevance of states
[Chockler/Halpern/Kupf.’08, B./Funke/Maj.’21, Mascle et al’21]

• causality-based verification [Kupriyanov/Finkbeiner’13]

proof rules for stepwise cause-effect reasoning

...

...

...

18 / 359

Causality in the verification context

• program slicing [Weiser’79]

• causality-based explanations of counterexamples
⋆ counterfactual reasoning with distance metrics [Groce et al’06]

⋆ identification of “critical state-variable pairs” in cex [Beer et al’09]

⋆ event order logic for causal dependencies in cex [Leitner-Fischer/Leue’13]

• coverage and vacuity [Chockler et al’01, Beer et al’01, Kupferman/Vardi’03]

study mutations of system models or specifications

• causality and responsibility in operational models
⋆ cause-effect relations [Cho./Hal./Kup.’08, B./Fun./Maj.’21, B./Fun./Pir./Zie.’22]

⋆ quantitative measures for the relevance of states
[Chockler/Halpern/Kupf.’08, B./Funke/Maj.’21, Mascle et al’21]

• causality-based verification [Kupriyanov/Finkbeiner’13]

proof rules for stepwise cause-effect reasoning

19 / 359

Causality in the verification context

• program slicing [Weiser’79]

• causality-based explanations of counterexamples
⋆ counterfactual reasoning with distance metrics [Groce et al’06]

⋆ identification of “critical state-variable pairs” in cex [Beer et al’09]

⋆ event order logic for causal dependencies in cex [Leitner-Fischer/Leue’13]

• coverage and vacuity [Chockler et al’01, Beer et al’01, Kupferman/Vardi’03]

study mutations of system models or specifications

• causality and responsibility in operational models
⋆ cause-effect relations [Cho./Hal./Kup.’08, B./Fun./Maj.’21, B./Fun./Pir./Zie.’22]

⋆ quantitative measures for the relevance of states
[Chockler/Halpern/Kupf.’08, B./Funke/Maj.’21, Mascle et al’21]

• causality-based verification [Kupriyanov/Finkbeiner’13]

proof rules for stepwise cause-effect reasoning

20 / 359

Causality in the verification context

• program slicing [Weiser’79]

• causality-based explanations of counterexamples
⋆ counterfactual reasoning with distance metrics [Groce et al’06]

⋆ identification of “critical state-variable pairs” in cex [Beer et al’09]

⋆ event order logic for causal dependencies in cex [Leitner-Fischer/Leue’13]

• coverage and vacuity [Chockler et al’01, Beer et al’01, Kupferman/Vardi’03]

study mutations of system models or specifications

• causality and responsibility in operational models
⋆ cause-effect relations [Cho./Hal./Kup.’08, B./Fun./Maj.’21, B./Fun./Pir./Zie.’22]

⋆ quantitative measures for the relevance of states
[Chockler/Halpern/Kupf.’08, B./Funke/Maj.’21, Mascle et al’21]

• causality-based verification [Kupriyanov/Finkbeiner’13]

proof rules for stepwise cause-effect reasoning 21 / 359

Causality in the verification context

• program slicing [Weiser’79]

• causality-based explanations of counterexamples
⋆ counterfactual reasoning with distance metrics [Groce et al’06]

⋆ identification of “critical state-variable pairs” in cex [Beer et al’09]

⋆ event order logic for causal dependencies in cex [Leitner-Fischer/Leue’13]

• coverage and vacuity [Chockler et al’01, Beer et al’01, Kupferman/Vardi’03]

study mutations of system models or specifications

• causality and responsibility in operational models
⋆ cause-effect relations [Cho./Hal./Kup.’08, B./Fun./Maj.’21, B./Fun./Pir./Zie.’22]

⋆ quantitative measures for the relevance of states
[Chockler/Halpern/Kupf.’08, B./Funke/Maj.’21, Mascle et al’21]

• causality-based verification [Kupriyanov/Finkbeiner’13]

proof rules for stepwise cause-effect reasoning 22 / 359

Outline

• Introduction

• Necessary and sufficient causes

• Counterfactuality and responsibility in verification

• Probabilistic causality in Markovian models

• Conclusions

23 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Define forward notions of causality:

• necessary cause

“if the effect occurs then the cause must have happened before”

• sufficient cause

“if the cause happens then the effect will occur somewhen later”

• counterfactual cause

“set of states with minimal number of modifications to avoid the effect”

... many possible formalizations ...

24 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Define forward notions of causality:

• necessary cause

“if the effect occurs then the cause must have happened before”

• sufficient cause

“if the cause happens then the effect will occur somewhen later”

• counterfactual cause

“set of states with minimal number of modifications to avoid the effect”

... many possible formalizations ...

25 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Define forward notions of causality:

• necessary cause

“if the effect occurs then the cause must have happened before”

• sufficient cause

“if the cause happens then the effect will occur somewhen later”

• counterfactual cause

“set of states with minimal number of modifications to avoid the effect”

... many possible formalizations ...

26 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Define forward notions of causality:

• necessary cause

“if the effect occurs then the cause must have happened before”

• sufficient cause

“if the cause happens then the effect will occur somewhen later”

• counterfactual cause

“set of states with minimal number of modifications to avoid the effect”

... many possible formalizations ...
27 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Define forward notions of causality:

• necessary cause

“if the effect occurs then the cause must have happened before”

• sufficient cause

“if the cause happens then the effect will occur somewhen later”

• counterfactual cause

“set of states with minimal number of modifications to avoid the effect”

Here: characterization of necessary/sufficient causes using CTL*
28 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is called a

• necessary cause for EEE ifM |= ∀¬
(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
“if the effect occurs then the cause must have happened before”

• sufficient cause . . .

“if the cause happens then the effect will occur somewhen later”

29 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is called a

• necessary cause for EEE ifM |= ∀¬
(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
“if the effect occurs then the cause must have happened before”

• sufficient cause for EEE ifM |= ∀□
(
C →⃝♢E

)
M |= ∀□

(
C →⃝♢E

)
M |= ∀□

(
C →⃝♢E

)
“if the cause happens then the effect will occur somewhen later”

30 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is called a

• necessary cause for EEE ifM |= ∀¬
(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
“if the effect occurs then the cause must have happened before”

• sufficient cause for EEE ifM |= ∀□
(
C →⃝♢E

)
M |= ∀□

(
C →⃝♢E

)
M |= ∀□

(
C →⃝♢E

)
“if the cause happens then the effect will occur somewhen later”

Monotonicity:

CCC is necessary and C ⊆ DC ⊆ DC ⊆ D =⇒=⇒=⇒ DDD is necessary

CCC is sufficient and C ⊇ DC ⊇ DC ⊇ D =⇒=⇒=⇒ DDD is sufficient
31 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is called a

• necessary cause for EEE ifM |= ∀¬
(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
“if the effect occurs then the cause must have happened before”

• sufficient cause for EEE ifM |= ∀□
(
C →⃝♢E

)
M |= ∀□

(
C →⃝♢E

)
M |= ∀□

(
C →⃝♢E

)
“if the cause happens then the effect will occur somewhen later”

Transitivity (up to disjointness):

CCC necessary for DDD & DDD necessary for EEE =⇒=⇒=⇒ CCC necessary for EEE

CCC sufficient for DDD & DDD sufficient for EEE =⇒=⇒=⇒ CCC sufficient for EEE
32 / 359

Cause-effect relations in TS

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states.

Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is called a

• necessary cause for EEE ifM |= ∀¬
(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
M |= ∀¬

(
(¬C) UE

)
“if the effect occurs then the cause must have happened before”

• sufficient cause for EEE ifM |= ∀□
(
C →⃝♢E

)
M |= ∀□

(
C →⃝♢E

)
M |= ∀□

(
C →⃝♢E

)
“if the cause happens then the effect will occur somewhen later”

If all EEE -states are terminal then:

CCC is necessary iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
CCC is sufficient iff M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
33 / 359

Example: necessary and sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
CCC is a sufficient cause for EEE iff M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
&

(Fs Cs rsa → es

Cz
.

-8(e≥

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}

{c1, c2}{c1, c2}{c1, c2} necessary and sufficient

{c1}{c1}{c1} sufficient, not necessary

{c2}{c2}{c2} sufficient, not necessary

34 / 359

Example: necessary and sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
CCC is a sufficient cause for EEE iff M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
&

(Fs Cs rsa → es

Cz
.

-8(e≥

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
{c1, c2}{c1, c2}{c1, c2} necessary and sufficient

{c1}{c1}{c1} sufficient, not necessary

{c2}{c2}{c2} sufficient, not necessary

35 / 359

Example: necessary and sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
CCC is a sufficient cause for EEE iff M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
&

(Fs Cs rsa → es

Cz
.

-8(e≥

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
{c1, c2}{c1, c2}{c1, c2} necessary and sufficient

{c1}{c1}{c1} sufficient, not necessary

{c2}{c2}{c2} sufficient, not necessary

36 / 359

Example: necessary and sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
CCC is a sufficient cause for EEE iff M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
&

(Fs Cs rsa → es

Cz
.

-8(e≥

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
{c1, c2}{c1, c2}{c1, c2} necessary and sufficient

{c1}{c1}{c1} sufficient, not necessary

{c2}{c2}{c2} sufficient, not necessary
37 / 359

Example: necessary and sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
CCC is a sufficient cause for EEE iff M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
&

E.!
_. → e.

Cz
.

-•(e≥

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
{c1, c2}{c1, c2}{c1, c2} necessary, not sufficient

{c1}{c1}{c1} neither necessary nor sufficient

{c2}{c2}{c2} sufficient, not necessary
38 / 359

Pruning of necessary and sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
CCC is a sufficient cause for EEE iff M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
If CCC is a necessary resp. sufficient cause for EEE then so is its pruning
⌊C⌋⌊C⌋⌊C⌋, defined by:

⌊C⌋⌊C⌋⌊C⌋ ===
{
s ∈ C :M |= ∃(¬C) U s

}{
s ∈ C :M |= ∃(¬C) U s

}{
s ∈ C :M |= ∃(¬C) U s

}
⌊C⌋⌊C⌋⌊C⌋ results from CCC by removing all states sss where each path πππ from an
initial state to sss traverses another CCC -state. Hence: π |= ♢Cπ |= ♢Cπ |= ♢C iff π |= ♢⌊C⌋π |= ♢⌊C⌋π |= ♢⌊C⌋.

39 / 359

Pruning of necessary and sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
CCC is a sufficient cause for EEE iff M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
If CCC is a necessary resp. sufficient cause for EEE then so is its pruning
⌊C⌋⌊C⌋⌊C⌋, defined by:

⌊C⌋⌊C⌋⌊C⌋ ===
{
s ∈ C :M |= ∃(¬C) U s

}{
s ∈ C :M |= ∃(¬C) U s

}{
s ∈ C :M |= ∃(¬C) U s

}
... towards small and early causes (“root causes”) ...

40 / 359

Let’s have a closer look: sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a sufficient cause for EEE iff M |= ∀
(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)

Properties of sufficient causes:

• CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
is a sufficient cause

... and contains all other sufficient causes

• IfM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢E then ∅∅∅ is the only sufficient cause.

• Canonical sufficient cause: ⌊CE⌋⌊CE⌋⌊CE⌋

pruning operator: ⌊C⌋ =
{
s ∈ C :M |= ∃(¬C) U s

}

... is indeed a good one, with maximal degree of necessity (see later)

︸ ︷︷ ︸
there is no reachable state s

s.t. s |= ∀⃝∀♢E

41 / 359

Let’s have a closer look: sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a sufficient cause for EEE iff M |= ∀
(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
Properties of sufficient causes:

• CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
is a sufficient cause

... and contains all other sufficient causes

• IfM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢E then ∅∅∅ is the only sufficient cause.

• Canonical sufficient cause: ⌊CE⌋⌊CE⌋⌊CE⌋

pruning operator: ⌊C⌋ =
{
s ∈ C :M |= ∃(¬C) U s

}

... is indeed a good one, with maximal degree of necessity (see later)

︸ ︷︷ ︸
there is no reachable state s

s.t. s |= ∀⃝∀♢E

42 / 359

Let’s have a closer look: sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a sufficient cause for EEE iff M |= ∀
(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
Properties of sufficient causes:

• CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
is a sufficient cause

... and contains all other sufficient causes

• IfM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢E then ∅∅∅ is the only sufficient cause.

• Canonical sufficient cause: ⌊CE⌋⌊CE⌋⌊CE⌋

pruning operator: ⌊C⌋ =
{
s ∈ C :M |= ∃(¬C) U s

}

... is indeed a good one, with maximal degree of necessity (see later)

︸ ︷︷ ︸
there is no reachable state s

s.t. s |= ∀⃝∀♢E
43 / 359

Let’s have a closer look: sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a sufficient cause for EEE iff M |= ∀
(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
Properties of sufficient causes:

• CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
is a sufficient cause

... and contains all other sufficient causes

• IfM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢E then ∅∅∅ is the only sufficient cause.

• Canonical sufficient cause: ⌊CE⌋⌊CE⌋⌊CE⌋

pruning operator: ⌊C⌋ =
{
s ∈ C :M |= ∃(¬C) U s

}

... is indeed a good one, with maximal degree of necessity (see later)

︸ ︷︷ ︸
there is no reachable state s

s.t. s |= ∀⃝∀♢E

44 / 359

Let’s have a closer look: sufficient causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a sufficient cause for EEE iff M |= ∀
(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
M |= ∀

(
♢C → ♢E

)
Properties of sufficient causes:

• CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
is a sufficient cause

... and contains all other sufficient causes

• IfM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢EM ̸|= ∃♢∀⃝∀♢E then ∅∅∅ is the only sufficient cause.

• Canonical sufficient cause: ⌊CE⌋⌊CE⌋⌊CE⌋
... is indeed a good one, with maximal degree of necessity (see later)

︸ ︷︷ ︸
there is no reachable state s

s.t. s |= ∀⃝∀♢E

45 / 359

Let’s have a closer look: necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
Properties of necessary causes:

• The set III of initial states is a trivial necessary cause.

• Pre(E)Pre(E)Pre(E) ===
{
s : ∃s ′ ∈ E

{
s : ∃s ′ ∈ E

{
s : ∃s ′ ∈ E s.t. s → s ′

}
s → s ′

}
s → s ′

}
is a necessary cause for EEE .

• How to define “good necessary causes”?

Idea: seek for necessary causes that are “maximal sufficient”

46 / 359

Let’s have a closer look: necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
Properties of necessary causes:

• The set III of initial states is a trivial necessary cause.

• Pre(E)Pre(E)Pre(E) ===
{
s : ∃s ′ ∈ E

{
s : ∃s ′ ∈ E

{
s : ∃s ′ ∈ E s.t. s → s ′

}
s → s ′

}
s → s ′

}
is a necessary cause for EEE .

• How to define “good necessary causes”?

Idea: seek for necessary causes that are “maximal sufficient”

47 / 359

Let’s have a closer look: necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
Properties of necessary causes:

• The set III of initial states is a trivial necessary cause.

• Pre(E)Pre(E)Pre(E) ===
{
s : ∃s ′ ∈ E

{
s : ∃s ′ ∈ E

{
s : ∃s ′ ∈ E s.t. s → s ′

}
s → s ′

}
s → s ′

}
is a necessary cause for EEE .

• How to define “good necessary causes”?

Idea: seek for necessary causes that are “maximal sufficient”

48 / 359

Let’s have a closer look: necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. Then:

CCC is a necessary cause for EEE iff M |= ∀
(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
M |= ∀

(
♢E → ♢C

)
Properties of necessary causes:

• The set III of initial states is a trivial necessary cause.

• Pre(E)Pre(E)Pre(E) ===
{
s : ∃s ′ ∈ E

{
s : ∃s ′ ∈ E

{
s : ∃s ′ ∈ E s.t. s → s ′

}
s → s ′

}
s → s ′

}
is a necessary cause for EEE .

• How to define “good necessary causes”?

Idea: seek for necessary causes that are “maximal sufficient”

49 / 359

Degree of sufficiency and necessity

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅ and C ,E ̸= ∅C ,E ̸= ∅C ,E ̸= ∅.

ConsiderMMM as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency
(“precision”)

PrM
(
♢E | ♢C)PrM

(
♢E | ♢C)PrM

(
♢E | ♢C) ===

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

degree of necessity
(“recall”)

PrM
(
♢C | ♢E)PrM

(
♢C | ♢E)PrM

(
♢C | ♢E) ===

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

If CCC is a sufficient cause then the degree of sufficiency is 1.

50 / 359

Degree of sufficiency and necessity

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅ and C ,E ̸= ∅C ,E ̸= ∅C ,E ̸= ∅.

ConsiderMMM as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency
(“precision”)

PrM
(
♢E | ♢C)PrM

(
♢E | ♢C)PrM

(
♢E | ♢C) ===

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

degree of necessity
(“recall”)

PrM
(
♢C | ♢E)PrM

(
♢C | ♢E)PrM

(
♢C | ♢E) ===

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

If CCC is a sufficient cause then the degree of sufficiency is 1.

51 / 359

Degree of sufficiency and necessity

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅ and C ,E ̸= ∅C ,E ̸= ∅C ,E ̸= ∅.

ConsiderMMM as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency
(“precision”)

PrM
(
♢E | ♢C)PrM

(
♢E | ♢C)PrM

(
♢E | ♢C) ===

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

degree of necessity
(“recall”)

PrM
(
♢C | ♢E)PrM

(
♢C | ♢E)PrM

(
♢C | ♢E) ===

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

If CCC is a sufficient cause then the degree of sufficiency is 1.
52 / 359

Degree of sufficiency and necessity

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅ and C ,E ̸= ∅C ,E ̸= ∅C ,E ̸= ∅.

ConsiderMMM as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency
(“precision”)

PrM
(
♢E | ♢C)PrM

(
♢E | ♢C)PrM

(
♢E | ♢C) ===

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

degree of necessity
(“recall”)

PrM
(
♢C | ♢E)PrM

(
♢C | ♢E)PrM

(
♢C | ♢E) ===

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

If C is a sufficient cause then the degree of sufficiency is 1.
53 / 359

Degree of sufficiency and necessity

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅ and C ,E ̸= ∅C ,E ̸= ∅C ,E ̸= ∅.

ConsiderMMM as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency
(“precision”)

PrM
(
♢E | ♢C)PrM

(
♢E | ♢C)PrM

(
♢E | ♢C) ===

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

degree of necessity
(“recall”)

PrM
(
♢C | ♢E)PrM

(
♢C | ♢E)PrM

(
♢C | ♢E) ===

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

If CCC is a necessary cause then the degree of necessity is 1.
54 / 359

Degree of sufficiency and necessity

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal). Let C ⊆ SC ⊆ SC ⊆ S s.t. C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅ and C ,E ̸= ∅C ,E ̸= ∅C ,E ̸= ∅.

ConsiderMMM as a Markov chain (uniform distributions for the initial
states and the successors of every state).

degree of suffiency
(“precision”)

PrM
(
♢E | ♢C)PrM

(
♢E | ♢C)PrM

(
♢E | ♢C) ===

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

PrM(♢C ∧ ♢E)
PrM(♢C)

degree of necessity
(“recall”)

PrM
(
♢C | ♢E)PrM

(
♢C | ♢E)PrM

(
♢C | ♢E) ===

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

PrM(♢C ∧ ♢E)
PrM(♢E)

CCC and ⌊C⌋⌊C⌋⌊C⌋ have the same degree of suffiency and necessity.
55 / 359

Optimal sufficient and necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:

⌊CE⌋⌊CE⌋⌊CE⌋ where CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
Necessary causes with maximal degree of sufficiency:

⌊Pre(E)⌋⌊Pre(E)⌋⌊Pre(E)⌋

and ⌊C⌋⌊C⌋⌊C⌋ where C =
{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}

State-minimal necessary causes computable in polynomial time
using algorithms for weight-minimal s-t-cuts in directed graphs

56 / 359

Optimal sufficient and necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:

⌊CE⌋⌊CE⌋⌊CE⌋ where CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}

Necessary causes with maximal degree of sufficiency:

⌊Pre(E)⌋⌊Pre(E)⌋⌊Pre(E)⌋

and ⌊C⌋⌊C⌋⌊C⌋ where C =
{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}

State-minimal necessary causes computable in polynomial time
using algorithms for weight-minimal s-t-cuts in directed graphs

57 / 359

Optimal sufficient and necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:

⌊CE⌋⌊CE⌋⌊CE⌋ where CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
Necessary causes with maximal degree of sufficiency:

⌊Pre(E)⌋⌊Pre(E)⌋⌊Pre(E)⌋

and ⌊C⌋⌊C⌋⌊C⌋ where C =
{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}
State-minimal necessary causes computable in polynomial time
using algorithms for weight-minimal s-t-cuts in directed graphs

58 / 359

Optimal sufficient and necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:

⌊CE⌋⌊CE⌋⌊CE⌋ where CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
Necessary causes with maximal degree of sufficiency:

⌊Pre(E)⌋⌊Pre(E)⌋⌊Pre(E)⌋ and ⌊C⌋⌊C⌋⌊C⌋ where C =
{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}

State-minimal necessary causes computable in polynomial time
using algorithms for weight-minimal s-t-cuts in directed graphs

59 / 359

Optimal sufficient and necessary causes

Given a TSMMM with state space SSS and a set E ⊆ SE ⊆ SE ⊆ S of effect states
(non-initial, terminal, nonempty).

Sufficient cause with maximal degree of necessity:

⌊CE⌋⌊CE⌋⌊CE⌋ where CECECE
def

=
def

=
def

=
{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}{
s ∈ S : s |= ∀⃝∀♢E

}
Necessary causes with maximal degree of sufficiency:

⌊Pre(E)⌋⌊Pre(E)⌋⌊Pre(E)⌋ and ⌊C⌋⌊C⌋⌊C⌋ where C =
{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}
C =

{
s ∈ S : Prs(♢Pre(E)) = 1

}
State-minimal necessary causes computable in polynomial time
using algorithms for weight-minimal s-t-cuts in directed graphs

60 / 359

Outline

• Introduction

• Necessary and sufficient causes

• Counterfactuality and responsibility in verification

• Halpern-Pearl’s approach to counterfactual causality

• mutation-based forward responsibility

• game-based forward and backward responsibility

• quantitative responsibility via Shapley values

• Probabilistic causality in Markovian models

• Conclusions
61 / 359

Halpern-Pearl’s approach to causality

Causes and Explanations: A Structural-Model

Approach. Part I: Causes

Joseph Y. Halpern∗

Cornell University

Dept. of Computer Science

Ithaca, NY 14853

halpern@cs.cornell.edu

http://www.cs.cornell.edu/home/halpern

Judea Pearl†

Dept. of Computer Science

University of California, Los Angeles

Los Angeles, CA 90095

judea@cs.ucla.edu

http://www.cs.ucla.edu/∼judea

October 24, 2005

Abstract

We propose a new definition ofactual causes, usingstructural equationsto model

counterfactuals. We show that the definition yields a plausible and elegant account of

causation that handles well examples which have caused problems for other definitions

and resolves major difficulties in the traditional account.

∗Supported in part by NSF under grant IRI-96-25901

†Supported in part by grants from NSF, ONR, AFOSR, and MICRO.

A Modification of the Halpern-Pearl Definition of Causality

Joseph Y. Halpern ∗
Cornell University

Computer Science Department

Ithaca, NY 14853

halpern@cs.cornell.edu

http://www.cs.cornell.edu/home/halpern

Abstract

The original Halpern-Pearl definition of causality

[Halpern and Pearl, 2001] was updated in the jour-

nal version of the paper [Halpern and Pearl, 2005]

to deal with some problems pointed out by Hopkins

and Pearl [2003]. Here the definition is modified

yet again, in a way that (a) leads to a simpler defini-

tion, (b) handles the problems pointed out by Hop-

kins and Pearl, and many others, (c) gives reason-

able answers (that agree with those of the original

and updated definition) in the standard problematic

examples of causality, and (d) has lower complexity

than either the original or updated definitions.

1 Introduction
Causality plays a central role in the way people structure

the world. People constantly seek causal explanations for

their observations. Philosophers have typically distinguished

two notions of causality, which they have called type causal-

ity (sometimes called general causality) and actual causality

(sometimes called token causality or specific causality). Type

causality is perhaps what scientists are most concerned with.

These are general statements, such as “smoking causes lung

cancer” and “printing money causes inflation”. By way of

contrast, actual causality focuses on particular events: “the

fact that David smoked like a chimney for 30 years caused

him to get cancer last year”; “the car’s faulty brakes caused

the accident (not the pouring rain or the driver’s drunken-

ness)”. Here I focus on actual causality.

Despite the fact that the use of causality is ubiquitous, and

that it plays a key role in science and in the determination of

legal cases (among many other things), finding a good defini-

tion of actual causality has proved notoriously difficult. Most

recent definitions of actual causality, going back to the work

of Lewis [1973], involve counterfactuals. The idea is that A

is a cause of B if, had A not happened, B would not have

happened. This is the standard “but-for” test used in the law:

but for A, B would not have occurred.

∗Work supported in part by NSF grants IIS-0911036, and CCF-

1214844, by AFOSR grants FA9550-09-1-0266 and FA9550-12-1-

0040, and by ARO grant W911NF-14-1-0017.

However, as is well known, the but-for test is not always

sufficient to determine causality. Consider the following

well-known example, taken from [Paul and Hall, 2013]:

Suzy and Billy both pick up rocks and throw them

at a bottle. Suzy’s rock gets there first, shattering

the bottle. Since both throws are perfectly accurate,

Billy’s would have shattered the bottle had it not

been preempted by Suzy’s throw.

Here the but-for test fails. Even if Suzy hadn’t thrown, the

bottle would have shattered. Nevertheless, we want to call

Suzy’s throw a cause of the bottle shattering.

Halpern and Pearl [2001] introduced a definition using

structural equations that has proved quite influential. In the

structural-equations approach, the world is assumed to be

characterized by the values of a collection of variables. In this

example, we can use binary variable ST for “Suzy throws”

(ST = 1 if Suzy throws; ST = 0 if she doesn’t), BT for “Billy

throws”, and BS for “bottle shatters”. To show that ST = 1

is a cause of BS = 1, the Halpern-Pearl (henceforth HP) def-

inition allows us to consider a situation where Billy does not

throw (i.e., BT is set to 0). Under that contingency, the but-for

definition works just right: if Suzy doesn’t throw, the bottle

doesn’t shatter, and if Suzy throws, the bottle does shatter.

There is an obvious problem with this approach: it can also

be used to show that Billy’s throw is a cause of the bottle

shattering, which we do not want. Halpern and Pearl deal

with this problem by adding extra variables to the story; this

is needed to make it clear that Suzy and Billy play asymmet-

ric roles. Specifically, they add variables SH (for “Suzy hits

the bottle”) and BH (for “Billy hits the bottle”); in the ac-

tual situation, SH = 1 and BH = 0. By putting appropriate

restrictions on which contingencies can be considered, they

show that the HP definition does indeed allow us to conclude

that ST = 1 is a cause of BS = 1, and BT = 1 is not. (See

Section 3 for details.)
However, the question of which contingencies can be con-

sidered turns out to be subtle. Hopkins and Pearl [2003]

gave an example where the original HP definition gave ar-

guably inappropriate results; it was updated in the journal

version of the paper [Halpern and Pearl, 2005] in a way

that deals with this example. Further counterexamples were

given to the updated definition (see, for example, [Hall, 2007;

Hiddleston, 2005; Weslake, 2015]). By and large, these ex-

amples can be dealt with by taking into account considera-

62 / 359

Halpern-Pearl’s approach to causality

⋆ actual/specific vs general/type causes
actual cause is a factual event CCC that causes the effect EEE

general cause: e.g. “sweets cause obesity”

⋆ backward vs forward causality-based reasoning
backward: what has caused an observed effect EEE (e.g., observed event sequence)?

forward: what can cause an event E in a given world model?

⋆ counterfactual vs necessary vs sufficient cause-effect relations
counterfactual: if CCC would not have happened, then EEE would not have occured

necessary: if E occurs then C must have happened before

sufficient: if C happens then always E will occur somewhen later

⋆ deterministic vs probabilistic causes, and many more ...
63 / 359

HP structural equation model

Structural equation model: S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) where

ExoExoExo: set of exogenous variables (specify the context)

EndoEndoEndo: totally ordered set of endogenous variables, say x1, . . . , xnx1, . . . , xnx1, . . . , xn

f = (f1, . . . , fn)f = (f1, . . . , fn)f = (f1, . . . , fn) where fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)

f yields the values of the endo variables for context c ∈ Val(Exo)

Val(V) = set of valuations for the variables in V ⊆ Exo ∪ Endo

x1 only depends on the context
x2 only depends on the context and x1

...
...

Interventions:

given Y ⊆ EndoY ⊆ EndoY ⊆ Endo and β ∈ Val(Y)β ∈ Val(Y)β ∈ Val(Y), let

S[Y←β]S[Y←β]S[Y←β] ===

{
SSS when the YYY -variables are treated as
constants given by the values in βββ

for counterfactual reasoning:

“enforce values of endogenous variables (ignoring their equations)”

64 / 359

HP structural equation model

Structural equation model: S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) where

ExoExoExo: set of exogenous variables (specify the context)

EndoEndoEndo: totally ordered set of endogenous variables, say x1, . . . , xnx1, . . . , xnx1, . . . , xn

f = (f1, . . . , fn)f = (f1, . . . , fn)f = (f1, . . . , fn) where fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)

f yields the values of the endo variables for context c ∈ Val(Exo)

Val(V) = set of valuations for the variables in V ⊆ Exo ∪ Endo

x1 only depends on the context
x2 only depends on the context and x1
x3 only depends on the context and x1, x2
...

...

Interventions:

given Y ⊆ EndoY ⊆ EndoY ⊆ Endo and β ∈ Val(Y)β ∈ Val(Y)β ∈ Val(Y), let

S[Y←β]S[Y←β]S[Y←β] ===

{
SSS when the YYY -variables are treated as
constants given by the values in βββ

for counterfactual reasoning:

“enforce values of endogenous variables (ignoring their equations)”

65 / 359

HP structural equation model

Structural equation model: S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) where

ExoExoExo: set of exogenous variables (specify the context)

EndoEndoEndo: totally ordered set of endogenous variables, say x1, . . . , xnx1, . . . , xnx1, . . . , xn

f = (f1, . . . , fn)f = (f1, . . . , fn)f = (f1, . . . , fn) where fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)

f yields the values of the endo variables for context c ∈ Val(Exo)

Val(V) = set of valuations for the variables in V ⊆ Exo ∪ Endo

x1 only depends on the context
x2 only depends on the context and x1
...

...

...
...

Interventions:

given Y ⊆ EndoY ⊆ EndoY ⊆ Endo and β ∈ Val(Y)β ∈ Val(Y)β ∈ Val(Y), let

S[Y←β]S[Y←β]S[Y←β] ===

{
SSS when the YYY -variables are treated as
constants given by the values in βββ

for counterfactual reasoning:

“enforce values of endogenous variables (ignoring their equations)”

66 / 359

HP structural equation model

Structural equation model: S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) where

ExoExoExo: set of exogenous variables (specify the context)

EndoEndoEndo: totally ordered set of endogenous variables, say x1, . . . , xnx1, . . . , xnx1, . . . , xn

f = (f1, . . . , fn)f = (f1, . . . , fn)f = (f1, . . . , fn) where fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)

fff yields the values of the endo variables for context c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo):

α1α1α1 === S1(c)S1(c)S1(c)
def

=
def

=
def

= f1(c)f1(c)f1(c) (value for x1x1x1)

α2α2α2 === S2(c)S2(c)S2(c)
def

=
def

=
def

= f2(c , α1)f2(c , α1)f2(c , α1) (value for x2x2x2)
...
...
...

...

...

...
...
...
...

αnαnαn === Sn(c)Sn(c)Sn(c)
def

=
def

=
def

= fn(c , α1, . . . , αn−1)fn(c , α1, . . . , αn−1)fn(c , α1, . . . , αn−1) (value for xnxnxn)

x1 only depends on the context
x2 only depends on the context and x1
...

...

...
...

Interventions:

given Y ⊆ EndoY ⊆ EndoY ⊆ Endo and β ∈ Val(Y)β ∈ Val(Y)β ∈ Val(Y), let

S[Y←β]S[Y←β]S[Y←β] ===

{
SSS when the YYY -variables are treated as
constants given by the values in βββ

for counterfactual reasoning:

“enforce values of endogenous variables (ignoring their equations)”

67 / 359

HP structural equation model

Structural equation model: S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) where

ExoExoExo: set of exogenous variables (specify the context)

EndoEndoEndo: totally ordered set of endogenous variables, say x1, . . . , xnx1, . . . , xnx1, . . . , xn

f = (f1, . . . , fn)f = (f1, . . . , fn)f = (f1, . . . , fn) where fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)

Interventions:

given Y ⊆ EndoY ⊆ EndoY ⊆ Endo and β ∈ Val(Y)β ∈ Val(Y)β ∈ Val(Y), let

S[Y←β]S[Y←β]S[Y←β] ===

{
SSS when the YYY -variables are treated as
constants given by the values in βββ

for counterfactual reasoning:

“enforce values of endogenous variables (ignoring their equations)”
68 / 359

HP structural equation model

Structural equation model: S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) where

ExoExoExo: set of exogenous variables (specify the context)

EndoEndoEndo: totally ordered set of endogenous variables, say x1, . . . , xnx1, . . . , xnx1, . . . , xn

f = (f1, . . . , fn)f = (f1, . . . , fn)f = (f1, . . . , fn) where fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)fi : Val(Exo, x1, . . . , xi−1)→ Val(xi)

Interventions: given Y ⊆ EndoY ⊆ EndoY ⊆ Endo and β ∈ Val(Y)β ∈ Val(Y)β ∈ Val(Y), let

S[Y←β]S[Y←β]S[Y←β] ===

{
SSS when the YYY -variables are treated as
constants given by the values in βββ

for counterfactual reasoning:

“enforce values of endogenous variables (ignoring their equations)”
69 / 359

HP causality

[Halpern’15]

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• X ⊆ EndoX ⊆ EndoX ⊆ Endo and ααα === SX (c)SX (c)SX (c)

Then X=αX=αX=α is for φφφ in context ccc iff

[AC1] ... counterfactual condition ...

(S[X←β], c)(S[X←β], c)(S[X←β], c) |=|=|= ¬φ¬φ¬φ

[AC2] ... minimality condition

↖
tuple of values for XXX
in SSS for context ccc

obtained by the equations
xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)

70 / 359

HP causality

[Halpern’15]

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• X ⊆ EndoX ⊆ EndoX ⊆ Endo and ααα === SX (c)SX (c)SX (c)

Then X=αX=αX=α is for φφφ in context ccc iff

[AC1] ... counterfactual condition ...

(S[X←β], c)(S[X←β], c)(S[X←β], c) |=|=|= ¬φ¬φ¬φ

[AC2] ... minimality condition

↖
tuple of values for XXX
in SSS for context ccc

obtained by the equations
xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)

71 / 359

HP causality

[Halpern’15]

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• X ⊆ EndoX ⊆ EndoX ⊆ Endo and ααα === SX (c)SX (c)SX (c)

Then X=αX=αX=α is for φφφ in context ccc iff

[AC1] ... counterfactual condition ...

(S[X←β], c)(S[X←β], c)(S[X←β], c) |=|=|= ¬φ¬φ¬φ

[AC2] ... minimality condition

↖
tuple of values for XXX
in SSS for context ccc

obtained by the equations
xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)

72 / 359

HP causality

[Halpern’15]

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• X ⊆ EndoX ⊆ EndoX ⊆ Endo and ααα === SX (c)SX (c)SX (c)

Then X=αX=αX=α is called a cause for φφφ in context ccc iff

[AC1] ... counterfactual condition ...

(S[X←β], c)(S[X←β], c)(S[X←β], c) |=|=|= ¬φ¬φ¬φ

[AC2] ... minimality condition

↖
tuple of values for XXX
in SSS for context ccc

obtained by the equations
xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)

73 / 359

HP causality

[Halpern’15]

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• X ⊆ EndoX ⊆ EndoX ⊆ Endo and ααα === SX (c)SX (c)SX (c)

Then X=αX=αX=α is a but-for cause for φφφ in context ccc iff

[AC1] There is β ∈ Val(X)β ∈ Val(X)β ∈ Val(X) such that

(S[X←β], c)(S[X←β], c)(S[X←β], c) |=|=|= ¬φ¬φ¬φ

[AC2] ... minimality condition

↖
tuple of values for XXX
in SSS for context ccc

obtained by the equations
xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)

74 / 359

HP causality [Halpern’15]

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• X ⊆ EndoX ⊆ EndoX ⊆ Endo and ααα === SX (c)SX (c)SX (c)

Then X=αX=αX=α is an actual cause for φφφ in context ccc iff

[AC1] There is β ∈ Val(X)β ∈ Val(X)β ∈ Val(X) and Y ⊆ EndoY ⊆ EndoY ⊆ Endo such that

(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c) |=|=|= ¬φ¬φ¬φ

[AC2] ... minimality condition

↖
tuple of values for XXX
in SSS for context ccc

obtained by the equations
xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)

75 / 359

HP causality [Halpern’15]

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• X ⊆ EndoX ⊆ EndoX ⊆ Endo and ααα === SX (c)SX (c)SX (c)

Then X=αX=αX=α is an actual cause for φφφ in context ccc iff

[AC1] There is β ∈ Val(X)β ∈ Val(X)β ∈ Val(X) and Y ⊆ EndoY ⊆ EndoY ⊆ Endo such that

(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c) |=|=|= ¬φ¬φ¬φ

[AC2] XXX is minimal w.r.t. condition [AC1]

↖
tuple of values for XXX
in SSS for context ccc

obtained by the equations
xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)xi = fi (c , x1, . . . , xi−1)

76 / 359

HP causality and degree of responsibility

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• x ∈ Endox ∈ Endox ∈ Endo and ααα === Sx(c)Sx(c)Sx(c)
Then, the degree of responsibility of x=αx=αx=α for φφφ is . . .

1
m
1
m
1
m where

mmm ===

{
minimal number of value-changes for endo variables
required to make φφφ counterfactually depend on xxx

Formally: m = |X |m = |X |m = |X | where XXX is a smallest set of endogenous variables that contains
xxx and satisfies [AC1], i.e., there exist a valuation βββ for XXX and Y ⊆ EndoY ⊆ EndoY ⊆ Endo s.t.:

(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c) |=|=|= ¬φ¬φ¬φ

[Chockler/Halpern/Kupferman, ACM ToCL 2008]

77 / 359

HP causality and degree of responsibility

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• x ∈ Endox ∈ Endox ∈ Endo and ααα === Sx(c)Sx(c)Sx(c)
Then, the degree of responsibility of x=αx=αx=α for φφφ is

. . .

1
m
1
m
1
m where

mmm ===

{
minimal number of value-changes for endo variables
required to make φφφ counterfactually depend on xxx

Formally: m = |X |m = |X |m = |X | where XXX is a smallest set of endogenous variables that contains
xxx and satisfies [AC1], i.e., there exist a valuation βββ for XXX and Y ⊆ EndoY ⊆ EndoY ⊆ Endo s.t.:

(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c) |=|=|= ¬φ¬φ¬φ

[Chockler/Halpern/Kupferman, ACM ToCL 2008]

78 / 359

HP causality and degree of responsibility

Let S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f) be a structural equation model and

• φφφ be a Boolean conditon for the values of variables (exo or endo)

• c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo) a context s.t. (S, c) |= φ(S, c) |= φ(S, c) |= φ

• x ∈ Endox ∈ Endox ∈ Endo and ααα === Sx(c)Sx(c)Sx(c)
Then, the degree of responsibility of x=αx=αx=α for φφφ is

. . .

1
m
1
m
1
m where

mmm ===

{
minimal number of value-changes for endo variables
required to make φφφ counterfactually depend on xxx

Formally: m = |X |m = |X |m = |X | where XXX is a smallest set of endogenous variables that contains
xxx and satisfies [AC1], i.e., there exist a valuation βββ for XXX and Y ⊆ EndoY ⊆ EndoY ⊆ Endo s.t.:

(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c)(S[X←β,Y←SY (c)], c) |=|=|= ¬φ¬φ¬φ

[Chockler/Halpern/Kupferman, ACM ToCL 2008]

79 / 359

Outline

• Introduction

• Necessary and sufficient causes

• Counterfactuality and responsibility in verification

• Halpern-Pearl’s approach to counterfactual causality

• mutation-based forward responsibility

• game-based forward and backward responsibility

• quantitative responsibility via Shapley values

• Probabilistic causality in Markovian models

• Conclusions
80 / 359

HP-based responsibility in TS

What Causes a System to Satisfy a Specification?

Hana Chockler

IBM Research∗

Joseph Y. Halpern

Cornell University†

Orna Kupferman

Hebrew University‡

Abstract

Even when a system is proven to be correct with respect to a specification, there is still a question

of how complete the specification is, and whether it really covers all the behaviors of the system.

Coverage metricsattempt to check which parts of a system are actually relevant for the verification

process to succeed. Recent work on coverage in model checking suggests several coverage metrics

and algorithms for finding parts of the system that are not covered by the specification. The work has

already proven to be effective in practice, detecting design errors that escape early verification efforts

in industrial settings. In this paper, we relate a formal definition of causality given by Halpern and

Pearl [2005] to coverage. We show that it gives significant insight into unresolved issues regarding

the definition of coverage and leads to potentially useful extensions of coverage. In particular, we

introduce the notion ofresponsibility, which assigns to components of a system a quantitative meas
ure

of their relevance to the satisfaction of the specification.

1 Introduction

In model checking, we verify the correctness of a finite-state system with respect to a desired behavior by

checking whether a labeled state-transition graph that models the system satisfies a specification of this

behavior [Clarke, Grumberg, and Peled 1999]. An important feature of model-checking tools is their abil-

ity to provide, along with a negative answer to the correctness query, a counterexample to the satisfaction

of the specification in the system. These counterexamples can be essential in detecting subtle errors in

complex designs [Clarke, Grumberg, McMillan, and Zhao 1995]. On the other hand, when the answer to

the correctness query is positive, most model-checking tools terminate with no further information to the

user. Since a positive answer means that the system is correc
t with respect to the specification, this may

seem to be reasonable at first glance.

In the last few years, however, there has been growing awareness that further analysis may be necessary

even if a model checker reports that a specification is satisfied by a given system. The concern is that the

satisfiability may be due to an error in the specification of the desired behavior or the modelling of the

system, rather than being due to the correctness of the system. Two main lines of research have focused on

techniques for checking such errors. One approach involvesvacuity detection, that is, checking whether

the specification is satisfied for vacuous reasons in the model [Beatty and Bryant 1994; Beer, Ben-David,

Eisner, and Rodeh 1997; Kurshan 1998; Kupferman and Vardi 1999; Purandare and Somenzi 2002]. One

particularly trivial reason for vacuity is that the specification is valid; perhaps more interesting are cases

of antecedent failure or valid/unsatisfiable constraints in the system. For example, the branching-time

∗Address: Haifa University, Carmel Mountains, Haifa, 31905, Israel. Email: hanac@il.ibm.com.

†Address: Department of Computer Science, Ithaca, NY 14853,U.S.A. Email: halpern@cs.cornell.edu.

‡ Address: School of Engineering and Computer Science, Jerusalem 91904, Israel. Email: orna@cs.huji.ac.il

81 / 359

Counterfactuality: backward vs forward

backward counterfactual causality

given an effect secanrio:

“if the cause would not have happened, then the effect would not have occured”︸ ︷︷ ︸
intervention:

modify cause items

forward counterfactual causality

= forward responsibility

given a world model:

“minimal set of items that need to be modified to avoid the effect”

degree of responsibility:
numerical values for individual cause items

82 / 359

Counterfactuality: backward vs forward

backward counterfactual causality

given an effect secanrio:

“if the cause would not have happened, then the effect would not have occured”︸ ︷︷ ︸
intervention:

modify cause items

forward counterfactual causality

= forward responsibility

given a world model:

“minimal set of items that need to be modified to avoid the effect”

degree of responsibility:
numerical values for individual cause items

83 / 359

Counterfactuality: backward vs forward

backward counterfactual causality

given an effect secanrio:

“if the cause would not have happened, then the effect would not have occured”︸ ︷︷ ︸
intervention:

modify cause items

forward counterfactual causality

= forward responsibility

given a world model:

“minimal set of items that need to be modified to avoid the effect”

degree of responsibility:
numerical values for individual cause items

84 / 359

Counterfactuality: backward vs forward

backward counterfactual causality

given an effect secanrio:

“if the cause would not have happened, then the effect would not have occured”︸ ︷︷ ︸
intervention:

modify cause items

forward counterfactual causality = forward responsibility

given a world model:

“minimal set of items that need to be modified to avoid the effect”

degree of responsibility:
numerical values for individual cause items

85 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.
Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• state sss is a qqq-cause state forM |= ϕM |= ϕM |= ϕ if there exists a switching
pair (T , s)(T , s)(T , s)

MMM t
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!

[Chockler/Halpern/Kupferman, ACM ToCL 2008]
86 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.

Intuitively: Ls(q) = 1Ls(q) = 1Ls(q) = 1 iff atomic proposition qqq holds in state sss

Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• state sss is a qqq-cause state forM |= ϕM |= ϕM |= ϕ if there exists a switching
pair (T , s)(T , s)(T , s)

MMM t
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!

[Chockler/Halpern/Kupferman, ACM ToCL 2008]
87 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.
Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• state sss is a qqq-cause state forM |= ϕM |= ϕM |= ϕ if there exists a switching
pair (T , s)(T , s)(T , s)

MMM t
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!

[Chockler/Halpern/Kupferman, ACM ToCL 2008]
88 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.
Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• state sss is a qqq-cause state forM |= ϕM |= ϕM |= ϕ if there exists a switching
pair (T , s)(T , s)(T , s)

MMM T = {t1, t2}T = {t1, t2}T = {t1, t2}t
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!

89 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.
Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• state sss is a qqq-cause state forM |= ϕM |= ϕM |= ϕ if there exists a switching
pair (T , s)(T , s)(T , s)

MMM MT ,qMT ,qMT ,qt
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!
90 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.
Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• state sss is a qqq-cause state forM |= ϕM |= ϕM |= ϕ if there exists a switching
pair (T , s)(T , s)(T , s)

MMM MT ,qMT ,qMT ,qt
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!

91 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.
Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• state sss is a qqq-cause state forM |= ϕM |= ϕM |= ϕ if there exists a switching
pair (T , s)(T , s)(T , s)

MMM MT ,qMT ,qMT ,qt
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!

92 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.
Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• state sss is a qqq-cause state forM |= ϕM |= ϕM |= ϕ if there exists a switching
pair (T , s)(T , s)(T , s)

MMM MT ,qMT ,qMT ,qt
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!

93 / 359

HP-like causality and responsibility in TS

Given a transition systemMMM with state space SSS and labeling
functions (Ls)s∈S(Ls)s∈S(Ls)s∈S where Ls : AP → {0, 1}Ls : AP → {0, 1}Ls : AP → {0, 1}.
Intervention (“mutations of the truth values of atomic propositions”):

• Given q ∈ APq ∈ APq ∈ AP and T ⊆ ST ⊆ ST ⊆ S , thenMT ,qMT ,qMT ,q isMMM with flipped
labeling values Lt(q)Lt(q)Lt(q) for t ∈ Tt ∈ Tt ∈ T .

SupposeM |= ϕM |= ϕM |= ϕ (temporal property over 2AP2AP2AP) and let q ∈ APq ∈ APq ∈ AP .

• switching pair: (T , s)(T , s)(T , s) where T ⊆ ST ⊆ ST ⊆ S , s ∈ Ss ∈ Ss ∈ S s.t.

MT ,q |= ϕMT ,q |= ϕMT ,q |= ϕ and MT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕMT∪{s},q ̸|= ϕ

• degree of qqq-responsibility of cause state sss is 1/(|T |+1)1/(|T |+1)1/(|T |+1) where
(T , s)(T , s)(T , s) is a switching pair of minimal size

MMM MT ,qMT ,qMT ,qt
,

' 9 - p

9 - p s
/↳

tz 9 - p

.

!!
.

.

!!

9 - ptu

9 - p s
✓↳

tz - q - p

.

!! !!

94 / 359

Example: responsibility à la Chockler et al

Ä
Sz S3

↓
54

AP = {q}AP = {q}AP = {q}
s1, s2, s3 ̸|= qs1, s2, s3 ̸|= qs1, s2, s3 ̸|= q
s4 |= qs4 |= qs4 |= q

M |= ∃♢qM |= ∃♢qM |= ∃♢q

MT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢q iff T = {s4}T = {s4}T = {s4}

(∅, s4)(∅, s4)(∅, s4) is the only switching pair

• s4s4s4 is a qqq-cause state and has responsibility 1

• s1, s2, s3s1, s2, s3s1, s2, s3 are not qqq-cause states and have responsibility 0

95 / 359

Example: responsibility à la Chockler et al

Ä
Sz S3

↓
54

AP = {q}AP = {q}AP = {q}
s1, s2, s3 ̸|= qs1, s2, s3 ̸|= qs1, s2, s3 ̸|= q
s4 |= qs4 |= qs4 |= q

M |= ∃♢qM |= ∃♢qM |= ∃♢q

MT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢q iff T = {s4}T = {s4}T = {s4}

(∅, s4)(∅, s4)(∅, s4) is the only switching pair

• s4s4s4 is a qqq-cause state and has responsibility 1

• s1, s2, s3s1, s2, s3s1, s2, s3 are not qqq-cause states and have responsibility 0

96 / 359

Example: responsibility à la Chockler et al

Ä
Sz S3

↓
54

AP = {q}AP = {q}AP = {q}
s1, s2, s3 ̸|= qs1, s2, s3 ̸|= qs1, s2, s3 ̸|= q
s4 |= qs4 |= qs4 |= q

M |= ∃♢qM |= ∃♢qM |= ∃♢q

MT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢q iff T = {s4}T = {s4}T = {s4}

(∅, s4)(∅, s4)(∅, s4) is the only switching pair

• s4s4s4 is a qqq-cause state and has responsibility 1

• s1, s2, s3s1, s2, s3s1, s2, s3 are not qqq-cause states and have responsibility 0

97 / 359

Example: responsibility à la Chockler et al

Ä
Sz S3

↓
54

AP = {q}AP = {q}AP = {q}
s1, s2, s3 ̸|= qs1, s2, s3 ̸|= qs1, s2, s3 ̸|= q
s4 |= qs4 |= qs4 |= q

M |= ∃♢qM |= ∃♢qM |= ∃♢q

MT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢q iff T = {s4}T = {s4}T = {s4}

(∅, s4)(∅, s4)(∅, s4) is the only switching pair

• s4s4s4 is a qqq-cause state and has responsibility 1

• s1, s2, s3s1, s2, s3s1, s2, s3 are not qqq-cause states and have responsibility 0
98 / 359

Example: responsibility à la Chockler et al

Ä
Sz S3

↓
54

AP = {q}AP = {q}AP = {q}
s1, s2 ̸|= qs1, s2 ̸|= qs1, s2 ̸|= q
s3, s4 |= qs3, s4 |= qs3, s4 |= q

M |= ∃♢qM |= ∃♢qM |= ∃♢q

MT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢qMT ,q ̸|= ∃♢q iff T = {s3, s4}T = {s3, s4}T = {s3, s4}

2 switching pairs

• s3, s4s3, s4s3, s4 are qqq-cause states and have responsibility 1/2

• s1, s2s1, s2s1, s2 are not qqq-cause states and have responsibility 0
99 / 359

HP-like causality and responsibility in TS

So far: notions of qqq-cause and degree of qqq-responsibility for fixed
atomic proposition qqq

Analogous definition independent of specific atomic proposition

Intervention:
• given T ⊆ S × APT ⊆ S × APT ⊆ S × AP , thenMTMTMT equalsMMM with flipped values
for the pairs (s, q) ∈ T(s, q) ∈ T(s, q) ∈ T

SupposeM |= ϕM |= ϕM |= ϕ

cause: set TTT s.t. MT ̸|= ϕMT ̸|= ϕMT ̸|= ϕ andMU |= ϕMU |= ϕMU |= ϕ for any subset UUU of TTT

degree of responsibility of pair (s, q)(s, q)(s, q) is 1/(|T |+1)1/(|T |+1)1/(|T |+1) where
T ∪ {(s, q)}T ∪ {(s, q)}T ∪ {(s, q)} is a cause of minimal size (under all causes containing (s, q)(s, q)(s, q))

100 / 359

HP-like causality and responsibility in TS

So far: notions of qqq-cause and degree of qqq-responsibility for fixed
atomic proposition qqq

Analogous definition independent of specific atomic proposition

Intervention:
• given T ⊆ S × APT ⊆ S × APT ⊆ S × AP , thenMTMTMT equalsMMM with flipped values
for the pairs (s, q) ∈ T(s, q) ∈ T(s, q) ∈ T

SupposeM |= ϕM |= ϕM |= ϕ

cause: set TTT s.t. MT ̸|= ϕMT ̸|= ϕMT ̸|= ϕ andMU |= ϕMU |= ϕMU |= ϕ for any subset UUU of TTT

degree of responsibility of pair (s, q)(s, q)(s, q) is 1/(|T |+1)1/(|T |+1)1/(|T |+1) where
T ∪ {(s, q)}T ∪ {(s, q)}T ∪ {(s, q)} is a cause of minimal size (under all causes containing (s, q)(s, q)(s, q))

101 / 359

HP-like causality and responsibility in TS

So far: notions of qqq-cause and degree of qqq-responsibility for fixed
atomic proposition qqq

Analogous definition independent of specific atomic proposition

Intervention:
• given T ⊆ S × APT ⊆ S × APT ⊆ S × AP , thenMTMTMT equalsMMM with flipped values
for the pairs (s, q) ∈ T(s, q) ∈ T(s, q) ∈ T

SupposeM |= ϕM |= ϕM |= ϕ

cause: set TTT s.t. MT ̸|= ϕMT ̸|= ϕMT ̸|= ϕ andMU |= ϕMU |= ϕMU |= ϕ for any subset UUU of TTT

degree of responsibility of pair (s, q)(s, q)(s, q) is 1/(|T |+1)1/(|T |+1)1/(|T |+1) where
T ∪ {(s, q)}T ∪ {(s, q)}T ∪ {(s, q)} is a cause of minimal size (under all causes containing (s, q)(s, q)(s, q))

102 / 359

Outline

• Introduction

• Necessary and sufficient causes

• Counterfactuality and responsibility in verification

• Halpern-Pearl’s approach to counterfactual causality

• mutation-based forward responsibility

• game-based forward and backward responsibility

• quantitative responsibility via Shapley values

• Probabilistic causality in Markovian models

• Conclusions
103 / 359

Responsibility w.r.t. nondeterministic choices

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

• forward: in which states do we need to control the
nondeterminism to ensure that ϕϕϕ does not hold inMMM?

• backward: for a given execution where ϕϕϕ holds, which states
were responsible for the satisfaction of ϕϕϕ?

which states would have had the option to avoid the bad event by resolving
the nondeterministic choices in a different way?

[Baier/Funke/Majumdar, IJCAI’21]
104 / 359

Responsibility w.r.t. nondeterministic choices

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

• forward: in which states do we need to control the
nondeterminism to ensure that ϕϕϕ does not hold inMMM?

• backward: for a given execution where ϕϕϕ holds, which states
were responsible for the satisfaction of ϕϕϕ?

which states would have had the option to avoid the bad event by resolving
the nondeterministic choices in a different way?

[Baier/Funke/Majumdar, IJCAI’21]
105 / 359

Responsibility w.r.t. nondeterministic choices

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

• forward: in which states do we need to control the
nondeterminism to ensure that ϕϕϕ does not hold inMMM?

• backward: for a given execution where ϕϕϕ holds, which states
were responsible for the satisfaction of ϕϕϕ?

which states would have had the option to avoid the bad event by resolving
the nondeterministic choices in a different way?

[Baier/Funke/Majumdar, IJCAI’21]
106 / 359

Responsibility w.r.t. nondeterministic choices

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

• forward: in which states do we need to control the
nondeterminism to ensure that ϕϕϕ does not hold inMMM?

• backward: for a given execution where ϕϕϕ holds, which states
were responsible for the satisfaction of ϕϕϕ?

which states would have had the option to avoid the bad event by resolving
the nondeterministic choices in a different way?

[Baier/Funke/Majumdar, IJCAI’21]
107 / 359

Responsibility w.r.t. nondeterministic choices

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

Game-based notions of responsibility for sets C ⊆ SC ⊆ SC ⊆ S

w.r.t. to their power of avoiding the bad event in terms of their
nondeterministic choices

using the two-player game structureMCMCMC :

• arena: state space, initial state and transitions ofMMM
• player 1 controls all states in CCC (objective ¬ϕ¬ϕ¬ϕ)

• player 2 controls all states in C = S \ CC = S \ CC = S \ C (objective ϕϕϕ)

[Baier/Funke/Majumdar, IJCAI’21]
108 / 359

Responsibility w.r.t. nondeterministic choices

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

Game-based notions of responsibility for sets C ⊆ SC ⊆ SC ⊆ S

w.r.t. to their power of avoiding the bad event in terms of their
nondeterministic choices

using the two-player game structureMCMCMC :

• arena: state space, initial state and transitions ofMMM
• player 1 controls all states in CCC (objective ¬ϕ¬ϕ¬ϕ)

• player 2 controls all states in C = S \ CC = S \ CC = S \ C (objective ϕϕϕ)

[Baier/Funke/Majumdar, IJCAI’21]

109 / 359

Forward responsibility for temporal properties

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

Let C ⊆ SC ⊆ SC ⊆ S . Then, CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
i.e., a strategy σσσ for player 1 s.t. the bad event does not happen in σσσ-plays

[F2] CCC is minimal w.r.t. [F1]
i.e., no proper subset can ensure that the bad event does not happen

Observations:

• IfM |= ∀ϕM |= ∀ϕM |= ∀ϕ then noone is forward responsible

, and vice versa.

• IfM |= ∀¬ϕM |= ∀¬ϕM |= ∀¬ϕ then exactly C = ∅C = ∅C = ∅ is forward responsible.

110 / 359

Forward responsibility for temporal properties

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

Let C ⊆ SC ⊆ SC ⊆ S . Then, CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
i.e., a strategy σσσ for player 1 s.t. the bad event does not happen in σσσ-plays

[F2] CCC is minimal w.r.t. [F1]
i.e., no proper subset can ensure that the bad event does not happen

Observations:

• IfM |= ∀ϕM |= ∀ϕM |= ∀ϕ then noone is forward responsible

, and vice versa.

• IfM |= ∀¬ϕM |= ∀¬ϕM |= ∀¬ϕ then exactly C = ∅C = ∅C = ∅ is forward responsible.

111 / 359

Forward responsibility for temporal properties

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

Let C ⊆ SC ⊆ SC ⊆ S . Then, CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
i.e., a strategy σσσ for player 1 s.t. the bad event does not happen in σσσ-plays

[F2] CCC is minimal w.r.t. [F1]
i.e., no proper subset can ensure that the bad event does not happen

Observations:

• IfM |= ∀ϕM |= ∀ϕM |= ∀ϕ then noone is forward responsible

, and vice versa.

• IfM |= ∀¬ϕM |= ∀¬ϕM |= ∀¬ϕ then exactly C = ∅C = ∅C = ∅ is forward responsible.

112 / 359

Forward responsibility for temporal properties

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

Let C ⊆ SC ⊆ SC ⊆ S . Then, CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
i.e., a strategy σσσ for player 1 s.t. the bad event does not happen in σσσ-plays

[F2] CCC is minimal w.r.t. [F1]
i.e., no proper subset can ensure that the bad event does not happen

Observations:

• IfM |= ∀ϕM |= ∀ϕM |= ∀ϕ then noone is forward responsible, and vice versa.

• IfM |= ∀¬ϕM |= ∀¬ϕM |= ∀¬ϕ then exactly C = ∅C = ∅C = ∅ is forward responsible.

113 / 359

Forward responsibility for temporal properties

Starting point: transition systemMMM with state space SSS and a path
property ϕϕϕ (bad event).

Let C ⊆ SC ⊆ SC ⊆ S . Then, CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
i.e., a strategy σσσ for player 1 s.t. the bad event does not happen in σσσ-plays

[F2] CCC is minimal w.r.t. [F1]
i.e., no proper subset can ensure that the bad event does not happen

Observations:

• IfM |= ∀ϕM |= ∀ϕM |= ∀ϕ then noone is forward responsible, and vice versa.

• IfM |= ∀¬ϕM |= ∀¬ϕM |= ∀¬ϕ then exactly C = ∅C = ∅C = ∅ is forward responsible.
114 / 359

Forward responsibility: example

S

t
"

-

u

r '

faü
'

Goal , Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

forward responsible sets:

{t, u}{t, u}{t, u}

{s, u}{s, u}{s, u}
{s, t}{s, t}{s, t}

CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
[F2] CCC is minimal w.r.t. [F1]

115 / 359

Forward responsibility: example

S

t
"

-

u

•

r w L r

"

Goal,Goal , fail

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

forward responsible sets:

{t, u}{t, u}{t, u}

{s, u}{s, u}{s, u}
{s, t}{s, t}{s, t}

CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
[F2] CCC is minimal w.r.t. [F1]

116 / 359

Forward responsibility: example

S

•

t
"

-

u

•

r s L r

Goal , fail Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

forward responsible sets:

{t, u}{t, u}{t, u}
{s, u}{s, u}{s, u}

{s, t}{s, t}{s, t}

CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
[F2] CCC is minimal w.r.t. [F1]

117 / 359

Forward responsibility: example

S

t
<

•

-

„

•

r '

fait
'

Goal , Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

forward responsible sets:

{t, u}{t, u}{t, u}
{s, u}{s, u}{s, u}
{s, t}{s, t}{s, t}

CCC is forward responsible for ϕϕϕ if

[F1] CCC has a winning strategy inMCMCMC for objective ¬ϕ¬ϕ¬ϕ
[F2] CCC is minimal w.r.t. [F1]

118 / 359

Responsibility in TS

• so far: forward responsibility

“which states are responsible for the satisfaction of a property of the
entire model?”

• now: backward responsibility

“which states are responsible for the satisfaction of an undesired property
along a given error scenario?”

⋆ strategic view: error scenario is a path

⋆ causality-based view: error scenario is a path + strategy for opponents

119 / 359

Responsibility in TS

• so far: forward responsibility

“which states are responsible for the satisfaction of a property of the
entire model?”

• now: backward responsibility

“which states are responsible for the satisfaction of an undesired property
along a given error scenario?”

⋆ strategic view: error scenario is a path

⋆ causality-based view: error scenario is a path + strategy for opponents

120 / 359

Strategic backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a path
π = s0 s1 s2 . . .π = s0 s1 s2 . . .π = s0 s1 s2 . . . s.t. π |= ϕπ |= ϕπ |= ϕ.

CCC is strategically backward responsible for “π |= ϕπ |= ϕπ |= ϕ” if

[SB1] there exists n ∈ Nn ∈ Nn ∈ N such that CCC has a winning strategy

inMCMCMC for objective ¬ϕ¬ϕ¬ϕ from state snsnsn
i.e., CCC could have played differently from snsnsn to enforce the violation of ϕϕϕ

[SB2] CCC is minimal w.r.t. [SB1]

121 / 359

Strategic backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a path
π = s0 s1 s2 . . .π = s0 s1 s2 . . .π = s0 s1 s2 . . . s.t. π |= ϕπ |= ϕπ |= ϕ.

CCC is strategically backward responsible for “π |= ϕπ |= ϕπ |= ϕ” if

[SB1] there exists n ∈ Nn ∈ Nn ∈ N such that CCC has a winning strategy

inMCMCMC for objective ¬ϕ¬ϕ¬ϕ from state snsnsn
i.e., CCC could have played differently from snsnsn to enforce the violation of ϕϕϕ

[SB2] CCC is minimal w.r.t. [SB1]

122 / 359

Strategic backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a path
π = s0 s1 s2 . . .π = s0 s1 s2 . . .π = s0 s1 s2 . . . s.t. π |= ϕπ |= ϕπ |= ϕ.

CCC is strategically backward responsible for “π |= ϕπ |= ϕπ |= ϕ” if

[SB1] there exists n ∈ Nn ∈ Nn ∈ N such that CCC has a winning strategy

inMCMCMC for objective ¬ϕ¬ϕ¬ϕ from state snsnsn
i.e., CCC could have played differently from snsnsn to enforce the violation of ϕϕϕ

[SB2] CCC is minimal w.r.t. [SB1]

123 / 359

Strategic backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a path
π = s0 s1 s2 . . .π = s0 s1 s2 . . .π = s0 s1 s2 . . . s.t. π |= ϕπ |= ϕπ |= ϕ.

CCC is strategically backward responsible for “π |= ϕπ |= ϕπ |= ϕ” if

[SB1] there exists n ∈ Nn ∈ Nn ∈ N such that CCC has a winning strategy

inMCMCMC for objective ¬ϕ¬ϕ¬ϕ from state snsnsn
i.e., CCC could have played differently from snsnsn to enforce the violation of ϕϕϕ

[SB2] CCC is minimal w.r.t. [SB1]

124 / 359

Strategic backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a path
π = s0 s1 s2 . . .π = s0 s1 s2 . . .π = s0 s1 s2 . . . s.t. π |= ϕπ |= ϕπ |= ϕ.

CCC is strategically backward responsible for “π |= ϕπ |= ϕπ |= ϕ” if

[SB1] there exists n ∈ Nn ∈ Nn ∈ N such that CCC has a winning strategy

inMCMCMC for objective ¬ϕ¬ϕ¬ϕ from state snsnsn
i.e., CCC could have played differently from snsnsn to enforce the violation of ϕϕϕ

[SB2] CCC is minimal w.r.t. [SB1]

objective from state snsnsn: ¬ϕ¬ϕ¬ϕ if ϕϕϕ is prefix independent,

but residual property “¬ϕ¬ϕ¬ϕ after s0 . . . sn−1s0 . . . sn−1s0 . . . sn−1” in the general case
125 / 359

Causal backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a
deterministic strategy profile σ = (σC , σC)σ = (σC , σC)σ = (σC , σC)

s.t. M, σ |= ϕM, σ |= ϕM, σ |= ϕ.︸ ︷︷ ︸
πσ |= ϕπσ |= ϕπσ |= ϕ

for the unique
σσσ-play πσπσπσ

CCC is causally backward responsible for “M, σ |= ϕM, σ |= ϕM, σ |= ϕ” if

[CB1] there exists a strategy τCτCτC for CCC inMCMCMC s.t. the
unique (τC , σC)(τC , σC)(τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ

i.e., CCC could have played differently to enforce the violation of ϕϕϕ,
when the strategy for the other states is fixed

[CB2] CCC is minimal w.r.t. [CB1]
i.e., no proper subset of CCC can enforce the violation of ϕϕϕ,
when the other states stick to their strategy

126 / 359

Causal backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a
deterministic strategy profile σ = (σC , σC)σ = (σC , σC)σ = (σC , σC)

s.t. M, σ |= ϕM, σ |= ϕM, σ |= ϕ.︸ ︷︷ ︸
πσ |= ϕπσ |= ϕπσ |= ϕ

for the unique
σσσ-play πσπσπσ

CCC is causally backward responsible for “M, σ |= ϕM, σ |= ϕM, σ |= ϕ” if

[CB1] there exists a strategy τCτCτC for CCC inMCMCMC s.t. the
unique (τC , σC)(τC , σC)(τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ

i.e., CCC could have played differently to enforce the violation of ϕϕϕ,
when the strategy for the other states is fixed

[CB2] CCC is minimal w.r.t. [CB1]
i.e., no proper subset of CCC can enforce the violation of ϕϕϕ,
when the other states stick to their strategy

Strategy profile σσσ specifies

• a path (the unique σσσ-play πσπσπσ)

• CCC ’s decision along other paths (for counterfactual reasoning)

• CCC ’s decision along other paths (irrelevant)
127 / 359

Causal backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a
deterministic strategy profile σ = (σC , σC)σ = (σC , σC)σ = (σC , σC) s.t. M, σ |= ϕM, σ |= ϕM, σ |= ϕ.︸ ︷︷ ︸

πσ |= ϕπσ |= ϕπσ |= ϕ
for the unique
σσσ-play πσπσπσ

CCC is causally backward responsible for “M, σ |= ϕM, σ |= ϕM, σ |= ϕ” if

[CB1] there exists a strategy τCτCτC for CCC inMCMCMC s.t. the
unique (τC , σC)(τC , σC)(τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ

i.e., CCC could have played differently to enforce the violation of ϕϕϕ,
when the strategy for the other states is fixed

[CB2] CCC is minimal w.r.t. [CB1]
i.e., no proper subset of CCC can enforce the violation of ϕϕϕ,
when the other states stick to their strategy

Strategy profile σ specifies

• a path (the unique σ-play πσ)

• C ’s decision along other paths (for counterfactual reasoning)

• C ’s decision along other paths (irrelevant)
128 / 359

Causal backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a
deterministic strategy profile σ = (σC , σC)σ = (σC , σC)σ = (σC , σC) s.t. M, σ |= ϕM, σ |= ϕM, σ |= ϕ.

︸ ︷︷ ︸
πσ |= ϕπσ |= ϕπσ |= ϕ

for the unique
σσσ-play πσπσπσ

CCC is causally backward responsible for “M, σ |= ϕM, σ |= ϕM, σ |= ϕ” if

[CB1] there exists a strategy τCτCτC for CCC inMCMCMC s.t. the
unique (τC , σC)(τC , σC)(τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ

i.e., CCC could have played differently to enforce the violation of ϕϕϕ,
when the strategy for the other states is fixed

[CB2] CCC is minimal w.r.t. [CB1]
i.e., no proper subset of CCC can enforce the violation of ϕϕϕ,
when the other states stick to their strategy

Strategy profile σ specifies

• a path (the unique σ-play πσ)

• C ’s decision along other paths (for counterfactual reasoning)

• C ’s decision along other paths (irrelevant)
129 / 359

Causal backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a
deterministic strategy profile σ = (σC , σC)σ = (σC , σC)σ = (σC , σC) s.t. M, σ |= ϕM, σ |= ϕM, σ |= ϕ.

︸ ︷︷ ︸
πσ |= ϕπσ |= ϕπσ |= ϕ

for the unique
σσσ-play πσπσπσ

CCC is causally backward responsible for “M, σ |= ϕM, σ |= ϕM, σ |= ϕ” if

[CB1] there exists a strategy τCτCτC for CCC inMCMCMC s.t. the
unique (τC , σC)(τC , σC)(τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ
i.e., CCC could have played differently to enforce the violation of ϕϕϕ,
when the strategy for the other states is fixed

[CB2] CCC is minimal w.r.t. [CB1]
i.e., no proper subset of CCC can enforce the violation of ϕϕϕ,
when the other states stick to their strategy

130 / 359

Causal backward responsibility

Given TSMMM, path property ϕϕϕ, a set CCC of states and a
deterministic strategy profile σ = (σC , σC)σ = (σC , σC)σ = (σC , σC) s.t. M, σ |= ϕM, σ |= ϕM, σ |= ϕ.

︸ ︷︷ ︸
πσ |= ϕπσ |= ϕπσ |= ϕ

for the unique
σσσ-play πσπσπσ

CCC is causally backward responsible for “M, σ |= ϕM, σ |= ϕM, σ |= ϕ” if

[CB1] there exists a strategy τCτCτC for CCC inMCMCMC s.t. the
unique (τC , σC)(τC , σC)(τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ
i.e., CCC could have played differently to enforce the violation of ϕϕϕ,
when the strategy for the other states is fixed

[CB2] CCC is minimal w.r.t. [CB1]
i.e., no proper subset of CCC can enforce the violation of ϕϕϕ,
when the other states stick to their strategy

131 / 359

Backward responsibility: example (strategic)

S

t
"

-

u

r '

faü
'

Goal , Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

path s t fail |= ϕs t fail |= ϕs t fail |= ϕ

strat-backward responsible:

{s, u}{s, u}{s, u}

{t}{t}{t}

C is strategically backward responsible for s0 s1 s2 . . . |= ϕ if

[SB1] there is n s.t. C has a winning strategy for ¬ϕ¬ϕ¬ϕ from sn
[SB2] C is minimal w.r.t. [SB1]

132 / 359

Backward responsibility: example (strategic)

⑧

④ -

u

' Ifaü
'

Goal , Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

path s t fail |= ϕs t fail |= ϕs t fail |= ϕ

strat-backward responsible:

{s, u}{s, u}{s, u}

{t}{t}{t}

C is strategically backward responsible for s0 s1 s2 . . . |= ϕ if

[SB1] there is n s.t. C has a winning strategy for ¬ϕ¬ϕ¬ϕ from sn
[SB2] C is minimal w.r.t. [SB1]

133 / 359

Backward responsibility: example (strategic)

⑧
•

④ -

u

Oo

r w L r

Goal ,
/ fail Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

path s t fail |= ϕs t fail |= ϕs t fail |= ϕ

strat-backward responsible:

{s, u}{s, u}{s, u}

{t}{t}{t}

C is strategically backward responsible for s0 s1 s2 . . . |= ϕ if

[SB1] there is n s.t. C has a winning strategy for ¬ϕ¬ϕ¬ϕ from sn
[SB2] C is minimal w.r.t. [SB1]

134 / 359

Backward responsibility: example (strategic)

⑧

④ -

u

•

' Ifaü
'

Goal , Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

path s t fail |= ϕs t fail |= ϕs t fail |= ϕ

strat-backward responsible:

{s, u}{s, u}{s, u}
{t}{t}{t}

C is strategically backward responsible for s0 s1 s2 . . . |= ϕ if

[SB1] there is n s.t. C has a winning strategy for ¬ϕ¬ϕ¬ϕ from sn
[SB2] C is minimal w.r.t. [SB1]

135 / 359

Backward responsibility: example (causal)

S

t
"

-

u

r '

faü
'

Goal , Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

strategy profile:
s → ts → ts → t, t → ft → ft → f , u → g2u → g2u → g2

causally backward responsible:

{t}{t}{t}; change t → g1t → g1t → g1

{s}{s}{s}; change s → us → us → u

C is causally backward responsible for (σC , σC) |= ϕ if

[CB1] there is a strategy τC for C s.t. the (τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ
[CB2] C is minimal w.r.t. [CB1]

136 / 359

Backward responsibility: example (causal)

S

•

t
"

-

u

• @

r w L r

Goal , fail Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

strategy profile:
s → ts → ts → t, t → ft → ft → f , u → g2u → g2u → g2

causally backward responsible:

{t}{t}{t}; change t → g1t → g1t → g1

{s}{s}{s}; change s → us → us → u

C is causally backward responsible for (σC , σC) |= ϕ if

[CB1] there is a strategy τC for C s.t. the (τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ
[CB2] C is minimal w.r.t. [CB1]

137 / 359

Backward responsibility: example (causal)

S

•

t
"

-

u

a- G- •

r w L r

Goal , fail Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

strategy profile:
s → ts → ts → t, t → ft → ft → f , u → g2u → g2u → g2

causally backward responsible:

{t}{t}{t}; change t → g1t → g1t → g1

{s}{s}{s}; change s → us → us → u

C is causally backward responsible for (σC , σC) |= ϕ if

[CB1] there is a strategy τC for C s.t. the (τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ
[CB2] C is minimal w.r.t. [CB1]

138 / 359

Backward responsibility: example (causal)

+
<}

°

•
-

u

• @

r '

faü
'

Goal , Goal,

ϕ = ♢failϕ = ♢failϕ = ♢fail (“bad event”)

strategy profile:
s → ts → ts → t, t → ft → ft → f , u → g2u → g2u → g2

causally backward responsible:

{t}{t}{t}; change t → g1t → g1t → g1

{s}{s}{s}; change s → us → us → u

C is causally backward responsible for (σC , σC) |= ϕ if

[CB1] there is a strategy τC for C s.t. the (τC , σC)-play satisfies ¬ϕ¬ϕ¬ϕ
[CB2] C is minimal w.r.t. [CB1]

139 / 359

Relation between f-, sb- and cb-responsibility

f-responsibility =⇒ sb-responsibility =⇒ cb-responsibility

Let CCC be a set of states.

• CCC is f-responsible for ϕϕϕ iff CCC contains a coalition that is
sb-responsible for all π |= ϕπ |= ϕπ |= ϕ, and is minimal w.r.t. this
property.

• If CCC is sb-responsible for π |= ϕπ |= ϕπ |= ϕ and σσσ a strategy profile s.t. πππ
is the σσσ-play then CCC contains a coalition that is cb-responsible
forM, σ |= ϕM, σ |= ϕM, σ |= ϕ.

f-responsible = forward responsible
sb-responsible = strategically backward responsible
cb-responsible = causally backward responsible

x
up to minimality

x
up to minimality

140 / 359

Relation between f-, sb- and cb-responsibility

f-responsibility =⇒ sb-responsibility =⇒ cb-responsibility

Let CCC be a set of states.

• CCC is f-responsible for ϕϕϕ iff CCC contains a coalition that is
sb-responsible for all π |= ϕπ |= ϕπ |= ϕ, and is minimal w.r.t. this
property.

• If CCC is sb-responsible for π |= ϕπ |= ϕπ |= ϕ and σσσ a strategy profile s.t. πππ
is the σσσ-play then CCC contains a coalition that is cb-responsible
forM, σ |= ϕM, σ |= ϕM, σ |= ϕ.

f-responsible = forward responsible
sb-responsible = strategically backward responsible
cb-responsible = causally backward responsible

x
up to minimality

x
up to minimality

141 / 359

Relation between f-, sb- and cb-responsibility

f-responsibility =⇒ sb-responsibility =⇒ cb-responsibility

Let CCC be a set of states.

• CCC is f-responsible for ϕϕϕ iff CCC contains a coalition that is
sb-responsible for all π |= ϕπ |= ϕπ |= ϕ, and is minimal w.r.t. this
property.

• If CCC is sb-responsible for π |= ϕπ |= ϕπ |= ϕ and σσσ a strategy profile s.t. πππ
is the σσσ-play then CCC contains a coalition that is cb-responsible
forM, σ |= ϕM, σ |= ϕM, σ |= ϕ.

f-responsible = forward responsible
sb-responsible = strategically backward responsible
cb-responsible = causally backward responsible

x
up to minimality

x
up to minimality

142 / 359

Relation between f-, sb- and cb-responsibility

f-responsibility =⇒ sb-responsibility =⇒ cb-responsibility

Let CCC be a set of states.

• CCC is f-responsible for ϕϕϕ iff CCC contains a coalition that is
sb-responsible for all π |= ϕπ |= ϕπ |= ϕ, and is minimal w.r.t. this
property.

• If CCC is sb-responsible for π |= ϕπ |= ϕπ |= ϕ and σσσ a strategy profile s.t. πππ
is the σσσ-play then CCC contains a coalition that is cb-responsible
forM, σ |= ϕM, σ |= ϕM, σ |= ϕ.

f-responsible = forward responsible
sb-responsible = strategically backward responsible
cb-responsible = causally backward responsible

x
up to minimality

x
up to minimality

143 / 359

Relation between f-, sb- and cb-responsibility

f-responsibility =⇒ sb-responsibility =⇒ cb-responsibility

Let CCC be a set of states.

• CCC is f-responsible for ϕϕϕ iff CCC contains a coalition that is
sb-responsible for all π |= ϕπ |= ϕπ |= ϕ, and is minimal w.r.t. this
property.

• If CCC is sb-responsible for π |= ϕπ |= ϕπ |= ϕ and σσσ a strategy profile s.t. πππ
is the σσσ-play then CCC contains a coalition that is cb-responsible
forM, σ |= ϕM, σ |= ϕM, σ |= ϕ.

x
generalizes

HP-causality in SEM

144 / 359

HP-causality and cb-responsibility

structural equation model S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f)
context c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo)

total order for
endo variables:

x1, . . . , xnx1, . . . , xnx1, . . . , xn

w�
tree-like transition systemMS,cMS,cMS,c

• root (level 0): given context ccc

• states at level i ∈ {1, . . . , n}: valuations for x1, . . . , xi−1, xix1, . . . , xi−1, xix1, . . . , xi−1, xi

• transitions of state s = [x1=α1, . . . , xi−1=αi−1]s = [x1=α1, . . . , xi−1=αi−1]s = [x1=α1, . . . , xi−1=αi−1] at level i−1:
default transition: s → [s, xi=fi(c , s)]s → [s, xi=fi(c , s)]s → [s, xi=fi(c , s)]

intervention: s → [s, xi=β]s → [s, xi=β]s → [s, xi=β] for any other value βββ

145 / 359

HP-causality and cb-responsibility

structural equation model S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f)
context c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo)

total order for
endo variables:

x1, . . . , xnx1, . . . , xnx1, . . . , xnw�
tree-like transition systemMS,cMS,cMS,c

• root (level 0): given context ccc

• states at level i ∈ {1, . . . , n}: valuations for x1, . . . , xi−1, xix1, . . . , xi−1, xix1, . . . , xi−1, xi

• transitions of state s = [x1=α1, . . . , xi−1=αi−1]s = [x1=α1, . . . , xi−1=αi−1]s = [x1=α1, . . . , xi−1=αi−1] at level i−1:
default transition: s → [s, xi=fi(c , s)]s → [s, xi=fi(c , s)]s → [s, xi=fi(c , s)]

intervention: s → [s, xi=β]s → [s, xi=β]s → [s, xi=β] for any other value βββ
146 / 359

HP-causality and cb-responsibility

structural equation model S = (Exo,Endo, f)S = (Exo,Endo, f)S = (Exo,Endo, f)
context c ∈ Val(Exo)c ∈ Val(Exo)c ∈ Val(Exo)

total order for
endo variables:

x1, . . . , xnx1, . . . , xnx1, . . . , xnw�
tree-like transition systemMS,cMS,cMS,c

Given a Boolean condition φφφ for the endogenous variables:

X=αX=αX=α is a but-for cause for φφφ

iff the XXX -states constitute a cb-responsible coalition
for ϕϕϕ under the default strategy profile

where ϕϕϕ === ♢♢♢“φφφ holds at some leave” and α = SX (c)α = SX (c)α = SX (c)
147 / 359

Outline

• Introduction

• Necessary and sufficient causes

• Counterfactuality and responsibility in verification

• Halpern-Pearl’s approach to counterfactual causality

• mutation-based forward responsibility

• game-based forward and backward responsibility

• quantitative responsibility via Shapley values

• Probabilistic causality in Markovian models

• Conclusions
148 / 359

Shapley values

Lloyd S. Shapley

(Nobel prize 2012 for Economics)

©The Nobel Foundation.
Photo: U. Montan

149 / 359

Cooperative games and Shapley values

Cooperative game: one-shot game consisting of

• a finite set of agents, say Ag = {1, . . . , n}Ag = {1, . . . , n}Ag = {1, . . . , n},
• a payoff function val : 2Ag → Rval : 2Ag → Rval : 2Ag → R s.t. val(∅) = 0val(∅) = 0val(∅) = 0

Given a total order πππ of AgAgAg and an agent a ∈ Aga ∈ Aga ∈ Ag:

π⩾aπ⩾aπ⩾a =
{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}

Shapley value: Sh(a)Sh(a)Sh(a) === 1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

(((
val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)

)))

︸ ︷︷ ︸
contribution of agent aaa to
the value of coalition π⩾aπ⩾aπ⩾a︸ ︷︷ ︸

“average contribution of agent aaa”

===
∑

C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)

150 / 359

Cooperative games and Shapley values

Cooperative game: one-shot game consisting of

• a finite set of agents, say Ag = {1, . . . , n}Ag = {1, . . . , n}Ag = {1, . . . , n},
• a payoff function val : 2Ag → Rval : 2Ag → Rval : 2Ag → R s.t. val(∅) = 0val(∅) = 0val(∅) = 0

val(C)val(C)val(C) = value of coalition C ⊆ AgC ⊆ AgC ⊆ Ag

Given a total order πππ of AgAgAg and an agent a ∈ Aga ∈ Aga ∈ Ag:

π⩾aπ⩾aπ⩾a =
{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}

Shapley value: Sh(a)Sh(a)Sh(a) === 1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

(((
val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)

)))

︸ ︷︷ ︸
contribution of agent aaa to
the value of coalition π⩾aπ⩾aπ⩾a︸ ︷︷ ︸

“average contribution of agent aaa”

===
∑

C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)

151 / 359

Cooperative games and Shapley values

Cooperative game: one-shot game consisting of

• a finite set of agents, say Ag = {1, . . . , n}Ag = {1, . . . , n}Ag = {1, . . . , n},
• a payoff function val : 2Ag → Rval : 2Ag → Rval : 2Ag → R s.t. val(∅) = 0val(∅) = 0val(∅) = 0

Given a total order πππ of AgAgAg and an agent a ∈ Aga ∈ Aga ∈ Ag:

π⩾aπ⩾aπ⩾a =
{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}

Shapley value: Sh(a)Sh(a)Sh(a) === 1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

(((
val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)

)))

︸ ︷︷ ︸
contribution of agent aaa to
the value of coalition π⩾aπ⩾aπ⩾a︸ ︷︷ ︸

“average contribution of agent aaa”

===
∑

C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)

152 / 359

Cooperative games and Shapley values

Cooperative game: one-shot game consisting of

• a finite set of agents, say Ag = {1, . . . , n}Ag = {1, . . . , n}Ag = {1, . . . , n},
• a payoff function val : 2Ag → Rval : 2Ag → Rval : 2Ag → R s.t. val(∅) = 0val(∅) = 0val(∅) = 0

Given a total order πππ of AgAgAg and an agent a ∈ Aga ∈ Aga ∈ Ag:

π⩾aπ⩾aπ⩾a =
{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}

Shapley value: Sh(a)Sh(a)Sh(a) === 1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

(((

val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)

)))

︸ ︷︷ ︸
contribution of agent aaa to
the value of coalition π⩾aπ⩾aπ⩾a

︸ ︷︷ ︸
contribution of agent aaa to
the value of coalition π⩾aπ⩾aπ⩾a︸ ︷︷ ︸

“average contribution of agent aaa”

===
∑

C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)

153 / 359

Cooperative games and Shapley values

Cooperative game: one-shot game consisting of

• a finite set of agents, say Ag = {1, . . . , n}Ag = {1, . . . , n}Ag = {1, . . . , n},
• a payoff function val : 2Ag → Rval : 2Ag → Rval : 2Ag → R s.t. val(∅) = 0val(∅) = 0val(∅) = 0

Given a total order πππ of AgAgAg and an agent a ∈ Aga ∈ Aga ∈ Ag:

π⩾aπ⩾aπ⩾a =
{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}
Shapley value: Sh(a)Sh(a)Sh(a) === 1

n!

∑
π∈Πn

1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

(((
val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)

)))︸ ︷︷ ︸
contribution of agent aaa to
the value of coalition π⩾aπ⩾aπ⩾a︸ ︷︷ ︸

“average contribution of agent aaa”

===
∑

C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)

154 / 359

Cooperative games and Shapley values

Cooperative game: one-shot game consisting of

• a finite set of agents, say Ag = {1, . . . , n}Ag = {1, . . . , n}Ag = {1, . . . , n},
• a payoff function val : 2Ag → Rval : 2Ag → Rval : 2Ag → R s.t. val(∅) = 0val(∅) = 0val(∅) = 0

Given a total order πππ of AgAgAg and an agent a ∈ Aga ∈ Aga ∈ Ag:

π⩾aπ⩾aπ⩾a =
{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}{
i ∈ Ag | π(i) ⩾ π(a)

}
Shapley value: Sh(a)Sh(a)Sh(a) === 1

n!

∑
π∈Πn

1
n!

∑
π∈Πn

1
n!

∑
π∈Πn

(((
val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)val(π⩾a)− val(π>a)

)))

︸ ︷︷ ︸
contribution of agent aaa to
the value of coalition π⩾aπ⩾aπ⩾a︸ ︷︷ ︸

“average contribution of agent aaa”

===
∑

C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)∑
C ⊆ Ag
a /∈ C

|C |!(n−|C |−1)!
n!

(
val(C∪{a})− val(C)

)
155 / 359

Importance values for path properties in TS

Given: a transition systemMMM with state space SSS and initial state
s0s0s0 and a path property ϕϕϕ (e.g. LTL formula).

Goal: define a measure for the impact of the states s ∈ Ss ∈ Ss ∈ S on the
truth value of ϕϕϕ in terms of their nondeterministic choices.

Game-based view:

• states may build coalitions that attempt to enforce ϕϕϕ
no matter how the other states resolve their nondeterministic choices

• importance value of a state = Shapley value
when the payoff is 1 for any coalition that can enforce ϕϕϕ and 0 otherwise

[Mascle/Baier/Funke/Jantsch/Kiefer, LICS’21]

156 / 359

Importance values for path properties in TS

Given: a transition systemMMM with state space SSS and initial state
s0s0s0 and a path property ϕϕϕ (e.g. LTL formula).

Goal: define a measure for the impact of the states s ∈ Ss ∈ Ss ∈ S on the
truth value of ϕϕϕ in terms of their nondeterministic choices.

Game-based view:

• states may build coalitions that attempt to enforce ϕϕϕ
no matter how the other states resolve their nondeterministic choices

• importance value of a state = Shapley value
when the payoff is 1 for any coalition that can enforce ϕϕϕ and 0 otherwise

[Mascle/Baier/Funke/Jantsch/Kiefer, LICS’21]

157 / 359

Importance values for path properties in TS

Given: a transition systemMMM with state space SSS and initial state
s0s0s0 and a path property ϕϕϕ (e.g. LTL formula).

Goal: define a measure for the impact of the states s ∈ Ss ∈ Ss ∈ S on the
truth value of ϕϕϕ in terms of their nondeterministic choices.

Game-based view:

• states may build coalitions that attempt to enforce ϕϕϕ
no matter how the other states resolve their nondeterministic choices

• importance value of a state = Shapley value
when the payoff is 1 for any coalition that can enforce ϕϕϕ and 0 otherwise

[Mascle/Baier/Funke/Jantsch/Kiefer, LICS’21]

158 / 359

Importance values for path properties in TS

Given: a transition systemMMM with state space SSS and initial state
s0s0s0 and a path property ϕϕϕ (e.g. LTL formula).

Let C ⊆ SC ⊆ SC ⊆ S

andMCMCMC as before with objective ϕϕϕ for CCC

... a coalition of states

Payoff value of coalition CCC :

valϕ(C)valϕ(C)valϕ(C) ===

{
111 : if CCC has a winning strategy inMCMCMC for ϕϕϕ

000 : otherwise

Importance value of state sss = Shapley value of sss

in the simple cooperative game with agent set Ag = SAg = SAg = S and payoff function valϕvalϕvalϕ

x
0/1-values and monotonicity, i.e., if C ⊆ DC ⊆ DC ⊆ D then valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)

159 / 359

Importance values for path properties in TS

Given: a transition systemMMM with state space SSS and initial state
s0s0s0 and a path property ϕϕϕ (e.g. LTL formula).

Let C ⊆ SC ⊆ SC ⊆ S andMCMCMC as before with objective ϕϕϕ for CCC

... a coalition of states

two-player turn-based gameMCMCMC :

• arena: state space, initial state and transitions ofMMM

• player 1 controls all states in CCC (objective ϕϕϕ)

• player 2 controls all states in C = S \ CC = S \ CC = S \ C (objective ¬ϕ¬ϕ¬ϕ)

Payoff value of coalition CCC :

valϕ(C)valϕ(C)valϕ(C) ===

{
111 : if CCC has a winning strategy inMCMCMC for ϕϕϕ

000 : otherwise

Importance value of state sss = Shapley value of sss

in the simple cooperative game with agent set Ag = SAg = SAg = S and payoff function valϕvalϕvalϕ

x
0/1-values and monotonicity, i.e., if C ⊆ DC ⊆ DC ⊆ D then valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)

160 / 359

Importance values for path properties in TS

Given: a transition systemMMM with state space SSS and initial state
s0s0s0 and a path property ϕϕϕ (e.g. LTL formula).

Let C ⊆ SC ⊆ SC ⊆ S andMCMCMC as before with objective ϕϕϕ for CCC

... a coalition of states

Payoff value of coalition CCC :

valϕ(C)valϕ(C)valϕ(C) ===

{
111 : if CCC has a winning strategy inMCMCMC for ϕϕϕ

000 : otherwise

Importance value of state sss = Shapley value of sss

in the simple cooperative game with agent set Ag = SAg = SAg = S and payoff function valϕvalϕvalϕ

x
0/1-values and monotonicity, i.e., if C ⊆ DC ⊆ DC ⊆ D then valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)

161 / 359

Importance values for path properties in TS

Given: a transition systemMMM with state space SSS and initial state
s0s0s0 and a path property ϕϕϕ (e.g. LTL formula).

Let C ⊆ SC ⊆ SC ⊆ S andMCMCMC as before with objective ϕϕϕ for CCC

... a coalition of states

Payoff value of coalition CCC :

valϕ(C)valϕ(C)valϕ(C) ===

{
111 : if CCC has a winning strategy inMCMCMC for ϕϕϕ

000 : otherwise

Importance value of state sss = Shapley value of sss

in the simple cooperative game with agent set Ag = SAg = SAg = S and payoff function valϕvalϕvalϕ

x
0/1-values and monotonicity, i.e., if C ⊆ DC ⊆ DC ⊆ D then valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)

162 / 359

Importance values for path properties in TS

Given: a transition systemMMM with state space SSS and initial state
s0s0s0 and a path property ϕϕϕ (e.g. LTL formula).

Let C ⊆ SC ⊆ SC ⊆ S andMCMCMC as before with objective ϕϕϕ for CCC

... a coalition of states

Payoff value of coalition CCC :

valϕ(C)valϕ(C)valϕ(C) ===

{
111 : if CCC has a winning strategy inMCMCMC for ϕϕϕ

000 : otherwise

Importance value of state sss = Shapley value of sss

in the simple cooperative game with agent set Ag = SAg = SAg = S and payoff function valϕvalϕvalϕx
0/1-values and monotonicity, i.e., if C ⊆ DC ⊆ DC ⊆ D then valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)valϕ(C) ⩽ valϕ(D)

163 / 359

Importance values: properties

Importance value of state sss = Shapley value of sss n = |S |n = |S |n = |S |

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
C ⊆ S
s /∈ C

∑
C ⊆ S
s /∈ C

∑
C ⊆ S
s /∈ C

|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)

===
∑
(C , s)

switching

∑
(C , s)

switching

∑
(C , s)

switching

|C |!(n−|C |−1)!
n!

|C |!(n−|C |−1)!
n!

|C |!(n−|C |−1)!
n! ===

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r ! where r = |R |r = |R |r = |R |

where (C , s)(C , s)(C , s) is switching iff valϕ(C∪{s}) = 1valϕ(C∪{s}) = 1valϕ(C∪{s}) = 1 and valϕ(C) = 0valϕ(C) = 0valϕ(C) = 0

︸ ︷︷ ︸
000 or 111

Iϕ(s) > 0Iϕ(s) > 0Iϕ(s) > 0 iff sss is relevant, i.e., there is a switching pair (C , s)(C , s)(C , s)

A switching pair (C , s)(C , s)(C , s) is relevant iff C ⊆ RC ⊆ RC ⊆ R = set of relevant states

164 / 359

Importance values: properties

Importance value of state sss = Shapley value of sss n = |S |n = |S |n = |S |

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
C ⊆ S
s /∈ C

∑
C ⊆ S
s /∈ C

∑
C ⊆ S
s /∈ C

|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)
===

∑
(C , s)

switching

∑
(C , s)

switching

∑
(C , s)

switching

|C |!(n−|C |−1)!
n!

|C |!(n−|C |−1)!
n!

|C |!(n−|C |−1)!
n!

===
∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r ! where r = |R |r = |R |r = |R |

where (C , s)(C , s)(C , s) is switching iff valϕ(C∪{s}) = 1valϕ(C∪{s}) = 1valϕ(C∪{s}) = 1 and valϕ(C) = 0valϕ(C) = 0valϕ(C) = 0

︸ ︷︷ ︸
000 or 111

Iϕ(s) > 0Iϕ(s) > 0Iϕ(s) > 0 iff sss is relevant, i.e., there is a switching pair (C , s)(C , s)(C , s)

A switching pair (C , s)(C , s)(C , s) is relevant iff C ⊆ RC ⊆ RC ⊆ R = set of relevant states

165 / 359

Importance values: properties

Importance value of state sss = Shapley value of sss n = |S |n = |S |n = |S |

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
C ⊆ S
s /∈ C

∑
C ⊆ S
s /∈ C

∑
C ⊆ S
s /∈ C

|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)
===

∑
(C , s)

switching

∑
(C , s)

switching

∑
(C , s)

switching

|C |!(n−|C |−1)!
n!

|C |!(n−|C |−1)!
n!

|C |!(n−|C |−1)!
n!

===
∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r ! where r = |R |r = |R |r = |R |

where (C , s)(C , s)(C , s) is switching iff valϕ(C∪{s}) = 1valϕ(C∪{s}) = 1valϕ(C∪{s}) = 1 and valϕ(C) = 0valϕ(C) = 0valϕ(C) = 0

Iϕ(s) > 0Iϕ(s) > 0Iϕ(s) > 0 iff sss is relevant, i.e., there is a switching pair (C , s)(C , s)(C , s)

A switching pair (C , s)(C , s)(C , s) is relevant iff C ⊆ RC ⊆ RC ⊆ R = set of relevant states

166 / 359

Importance values: properties

Importance value of state sss = Shapley value of sss n = |S |n = |S |n = |S |

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
C ⊆ S
s /∈ C

∑
C ⊆ S
s /∈ C

∑
C ⊆ S
s /∈ C

|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)|C |!(n−|C |−1)!
n!

(
valϕ(C∪{s})− valϕ(C)

)
===

∑
(C , s)

switching

∑
(C , s)

switching

∑
(C , s)

switching

|C |!(n−|C |−1)!
n!

|C |!(n−|C |−1)!
n!

|C |!(n−|C |−1)!
n! ===

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r ! where r = |R |r = |R |r = |R |

where (C , s)(C , s)(C , s) is switching iff valϕ(C∪{s}) = 1valϕ(C∪{s}) = 1valϕ(C∪{s}) = 1 and valϕ(C) = 0valϕ(C) = 0valϕ(C) = 0

Iϕ(s) > 0Iϕ(s) > 0Iϕ(s) > 0 iff sss is relevant, i.e., there is a switching pair (C , s)(C , s)(C , s)

A switching pair (C , s)(C , s)(C , s) is relevant iff C ⊆ RC ⊆ RC ⊆ R = set of relevant states

167 / 359

Importance values: properties

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

Zero-sum property of the game structureMCMCMC yields:

valϕ(C)valϕ(C)valϕ(C) === 1− val¬ϕ(C)1− val¬ϕ(C)1− val¬ϕ(C)

(C , s)(C , s)(C , s) relevant for ϕϕϕ iff
(
(C ∩ R) \ {s}, s

)(
(C ∩ R) \ {s}, s

)(
(C ∩ R) \ {s}, s

)
relevant for ¬ϕ¬ϕ¬ϕ

Hence: Iϕ(s)Iϕ(s)Iϕ(s) === I¬ϕ(s)I¬ϕ(s)I¬ϕ(s)
“importance of states on the truth value (satisfaction or violation) of ϕϕϕ”

168 / 359

Importance values: properties

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

Zero-sum property of the game structureMCMCMC yields:

valϕ(C)valϕ(C)valϕ(C) === 1− val¬ϕ(C)1− val¬ϕ(C)1− val¬ϕ(C)

(C , s)(C , s)(C , s) relevant for ϕϕϕ iff
(
(C ∩ R) \ {s}, s

)(
(C ∩ R) \ {s}, s

)(
(C ∩ R) \ {s}, s

)
relevant for ¬ϕ¬ϕ¬ϕ

Hence: Iϕ(s)Iϕ(s)Iϕ(s) === I¬ϕ(s)I¬ϕ(s)I¬ϕ(s)
“importance of states on the truth value (satisfaction or violation) of ϕϕϕ”

169 / 359

Importance values: properties

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

Zero-sum property of the game structureMCMCMC yields:

valϕ(C)valϕ(C)valϕ(C) === 1− val¬ϕ(C)1− val¬ϕ(C)1− val¬ϕ(C)

(C , s)(C , s)(C , s) relevant for ϕϕϕ iff
(
(C ∩ R) \ {s}, s

)(
(C ∩ R) \ {s}, s

)(
(C ∩ R) \ {s}, s

)
relevant for ¬ϕ¬ϕ¬ϕ︸ ︷︷ ︸

DDD

|D| = r−|C |−1|D| = r−|C |−1|D| = r−|C |−1 and |C |!(r−|C |−1)!
r ! = |D|!(r−|D|−1)!

r !
|C |!(r−|C |−1)!

r ! = |D|!(r−|D|−1)!
r !

|C |!(r−|C |−1)!
r ! = |D|!(r−|D|−1)!

r !

Hence: Iϕ(s)Iϕ(s)Iϕ(s) === I¬ϕ(s)I¬ϕ(s)I¬ϕ(s)
“importance of states on the truth value (satisfaction or violation) of ϕϕϕ”

170 / 359

Importance values: properties

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

Zero-sum property of the game structureMCMCMC yields:

valϕ(C)valϕ(C)valϕ(C) === 1− val¬ϕ(C)1− val¬ϕ(C)1− val¬ϕ(C)

(C , s)(C , s)(C , s) relevant for ϕϕϕ iff
(
(C ∩ R) \ {s}, s

)(
(C ∩ R) \ {s}, s

)(
(C ∩ R) \ {s}, s

)
relevant for ¬ϕ¬ϕ¬ϕ

Hence: Iϕ(s)Iϕ(s)Iϕ(s) === I¬ϕ(s)I¬ϕ(s)I¬ϕ(s)
“importance of states on the truth value (satisfaction or violation) of ϕϕϕ”

171 / 359

Importance values: example

①

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

deterministic states are irrelevant
(importance value 0)

two relevant pairs: ({w}, g)({w}, g)({w}, g), ({g},w)({g},w)({g},w)

Iϕ(w)Iϕ(w)Iϕ(w) === Iϕ(g)Iϕ(g)Iϕ(g) === 1!(2−1−1)!
2!

1!(2−1−1)!
2!

1!(2−1−1)!
2! === 1!0!

2!
1!0!
2!
1!0!
2! === 1

2
1
2
1
2

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

172 / 359

Importance values: example

ÄÄ
.

①

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

deterministic states are irrelevant
(importance value 0)

two relevant pairs: ({w}, g)({w}, g)({w}, g), ({g},w)({g},w)({g},w)

Iϕ(w)Iϕ(w)Iϕ(w) === Iϕ(g)Iϕ(g)Iϕ(g) === 1!(2−1−1)!
2!

1!(2−1−1)!
2!

1!(2−1−1)!
2! === 1!0!

2!
1!0!
2!
1!0!
2! === 1

2
1
2
1
2

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

173 / 359

Importance values: example

ÄÄ
.

①

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

deterministic states are irrelevant
(importance value 0)

two relevant pairs: ({w}, g)({w}, g)({w}, g), ({g},w)({g},w)({g},w)

Iϕ(w)Iϕ(w)Iϕ(w) === Iϕ(g)Iϕ(g)Iϕ(g) === 1!(2−1−1)!
2!

1!(2−1−1)!
2!

1!(2−1−1)!
2! === 1!0!

2!
1!0!
2!
1!0!
2! === 1

2
1
2
1
2

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

174 / 359

Importance values: example

¥:
ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

deterministic states are irrelevant
(importance value 0)

two relevant pairs: ({w}, g)({w}, g)({w}, g), ({g},w)({g},w)({g},w)

Iϕ(w)Iϕ(w)Iϕ(w) === Iϕ(g)Iϕ(g)Iϕ(g) === 1!(2−1−1)!
2!

1!(2−1−1)!
2!

1!(2−1−1)!
2! === 1!0!

2!
1!0!
2!
1!0!
2! === 1

2
1
2
1
2

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

175 / 359

Importance values: example

①

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

state fff is irrelevant

CCC has a winning strategy iff
g ∈ Cg ∈ Cg ∈ C and

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

In particular: r = 4r = 4r = 4

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

4 relevant pairs for ggg and Iϕ(g)Iϕ(g)Iϕ(g) === 3 · 2!(4−2−1)!4!
3 · 2!(4−2−1)!4!3 · 2!(4−2−1)!4! +++ 3!(4−3−1)!

4!
3!(4−3−1)!

4!
3!(4−3−1)!

4! === 1
2
1
2
1
2

2 relevant pairs for w1w1w1 and Iϕ(w1)Iϕ(w1)Iϕ(w1)=== 2 · 2!(4−2−1)!4!
2 · 2!(4−2−1)!4!2 · 2!(4−2−1)!4! === 1

6
1
6
1
6

176 / 359

Importance values: example

E
.

①

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

state fff is irrelevant

CCC has a winning strategy iff
g ∈ Cg ∈ Cg ∈ C and

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

In particular: r = 4r = 4r = 4

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

4 relevant pairs for ggg and Iϕ(g)Iϕ(g)Iϕ(g) === 3 · 2!(4−2−1)!4!
3 · 2!(4−2−1)!4!3 · 2!(4−2−1)!4! +++ 3!(4−3−1)!

4!
3!(4−3−1)!

4!
3!(4−3−1)!

4! === 1
2
1
2
1
2

2 relevant pairs for w1w1w1 and Iϕ(w1)Iϕ(w1)Iϕ(w1)=== 2 · 2!(4−2−1)!4!
2 · 2!(4−2−1)!4!2 · 2!(4−2−1)!4! === 1

6
1
6
1
6

177 / 359

Importance values: example

E
.

①

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

state fff is irrelevant

CCC has a winning strategy iff
g ∈ Cg ∈ Cg ∈ C and

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

In particular: r = 4r = 4r = 4

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

4 relevant pairs for ggg and Iϕ(g)Iϕ(g)Iϕ(g) === 3 · 2!(4−2−1)!4!
3 · 2!(4−2−1)!4!3 · 2!(4−2−1)!4! +++ 3!(4−3−1)!

4!
3!(4−3−1)!

4!
3!(4−3−1)!

4! === 1
2
1
2
1
2

2 relevant pairs for w1w1w1 and Iϕ(w1)Iϕ(w1)Iϕ(w1)=== 2 · 2!(4−2−1)!4!
2 · 2!(4−2−1)!4!2 · 2!(4−2−1)!4! === 1

6
1
6
1
6

178 / 359

Importance values: example

E
.

①

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

state fff is irrelevant

CCC has a winning strategy iff
g ∈ Cg ∈ Cg ∈ C and

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

In particular: r = 4r = 4r = 4

Importance value of state sss = Shapley value of sss

Iϕ(s)Iϕ(s)Iϕ(s) ===
∑
(C , s)
relevant

∑
(C , s)
relevant

∑
(C , s)
relevant

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r !

|C |!(r−|C |−1)!
r ! where rrr= # relevant states

4 relevant pairs for ggg and Iϕ(g)Iϕ(g)Iϕ(g) === 3 · 2!(4−2−1)!4!
3 · 2!(4−2−1)!4!3 · 2!(4−2−1)!4! +++ 3!(4−3−1)!

4!
3!(4−3−1)!

4!
3!(4−3−1)!

4! === 1
2
1
2
1
2

2 relevant pairs for w1w1w1 and Iϕ(w1)Iϕ(w1)Iϕ(w1)=== 2 · 2!(4−2−1)!4!
2 · 2!(4−2−1)!4!2 · 2!(4−2−1)!4! === 1

6
1
6
1
6

179 / 359

Importance values: example

.

①
"<

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

state fff is irrelevant

CCC has a winning strategy iff
g ∈ Cg ∈ Cg ∈ C and

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

In particular: r = 4r = 4r = 4

4 relevant pairs for ggg and Iϕ(g)Iϕ(g)Iϕ(g) === 3 · 2!(4−2−1)!4!
3 · 2!(4−2−1)!4!3 · 2!(4−2−1)!4! +++ 3!(4−3−1)!

4!
3!(4−3−1)!

4!
3!(4−3−1)!

4! === 1
2
1
2
1
2

2 relevant pairs for w1w1w1 and Iϕ(w1)Iϕ(w1)Iϕ(w1)=== 2 · 2!(4−2−1)!4!
2 · 2!(4−2−1)!4!2 · 2!(4−2−1)!4! === 1

6
1
6
1
6

180 / 359

Importance values: example

①
"<

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

state fff is irrelevant

CCC has a winning strategy iff
g ∈ Cg ∈ Cg ∈ C and

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

In particular: r = 4r = 4r = 4

4 relevant pairs for ggg and Iϕ(g)Iϕ(g)Iϕ(g) === 3 · 2!(4−2−1)!4!
3 · 2!(4−2−1)!4!3 · 2!(4−2−1)!4! +++ 3!(4−3−1)!

4!
3!(4−3−1)!

4!
3!(4−3−1)!

4! === 1
2
1
2
1
2

2 relevant pairs for w1w1w1 and Iϕ(w1)Iϕ(w1)Iϕ(w1)=== 2 · 2!(4−2−1)!4!
2 · 2!(4−2−1)!4!2 · 2!(4−2−1)!4! === 1

6
1
6
1
6

181 / 359

Importance values: example

:
①
"<

ϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬fϕ = □♢s ∧ ♢□¬f

state fff is irrelevant

CCC has a winning strategy iff
g ∈ Cg ∈ Cg ∈ C and

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

∣∣C ∩ {w1,w2, s}
∣∣ ⩾ 2

In particular: r = 4r = 4r = 4

4 relevant pairs for ggg and Iϕ(g)Iϕ(g)Iϕ(g) === 3 · 2!(4−2−1)!4!
3 · 2!(4−2−1)!4!3 · 2!(4−2−1)!4! +++ 3!(4−3−1)!

4!
3!(4−3−1)!

4!
3!(4−3−1)!

4! === 1
2
1
2
1
2

2 relevant pairs for w1w1w1 and Iϕ(w1)Iϕ(w1)Iϕ(w1)=== 2 · 2!(4−2−1)!4!
2 · 2!(4−2−1)!4!2 · 2!(4−2−1)!4! === 1

6
1
6
1
6

182 / 359

Importance values: algorithmic problems

For transition systemMMM with state space SSS and path property ϕϕϕ.

Value problem:

... standard game solving

given C ⊆ SC ⊆ SC ⊆ S , check whether valϕ(C) = 1valϕ(C) = 1valϕ(C) = 1

Usefulness problem:
given state sss, decide whether Iϕ(s) > 0Iϕ(s) > 0Iϕ(s) > 0

Importance problem:
given state sss, compute n! Iϕ(s)n! Iϕ(s)n! Iϕ(s)

Solving the usefulness and importance problems, via standard game
solving algorithms + guessing relevant pairs.

183 / 359

Importance values: algorithmic problems

For transition systemMMM with state space SSS and path property ϕϕϕ.

Value problem: ... standard game solving
given C ⊆ SC ⊆ SC ⊆ S , check whether valϕ(C) = 1valϕ(C) = 1valϕ(C) = 1

Usefulness problem:
given state sss, decide whether Iϕ(s) > 0Iϕ(s) > 0Iϕ(s) > 0

Importance problem:
given state sss, compute n! Iϕ(s)n! Iϕ(s)n! Iϕ(s)

Solving the usefulness and importance problems, via standard game
solving algorithms + guessing relevant pairs.

184 / 359

Importance values: algorithmic problems

For transition systemMMM with state space SSS and path property ϕϕϕ.

Value problem: ... standard game solving
given C ⊆ SC ⊆ SC ⊆ S , check whether valϕ(C) = 1valϕ(C) = 1valϕ(C) = 1

Usefulness problem:
given state sss, decide whether Iϕ(s) > 0Iϕ(s) > 0Iϕ(s) > 0

Importance problem:
given state sss, compute n! Iϕ(s)n! Iϕ(s)n! Iϕ(s)

Solving the usefulness and importance problems, via standard game
solving algorithms + guessing relevant pairs.

185 / 359

Importance values: complexity results

Büchi Rabin Streett Parity LTL

Value
problem P NP coNP ∈ NP ∩ coNP 2EXP

Usefulness
problem NP ΣP

2 ΣP
2 NP 2EXP

Importance
problem #P #PNP #PNP #P 2EXP

186 / 359

Importance values: complexity results

Büchi Rabin Streett Parity LTL

Value
problem P NP coNP ∈ NP ∩ coNP 2EXP

Usefulness
problem NP ΣP

2 ΣP
2 NP 2EXP

Importance
problem #P #PNP #PNP #P 2EXP

Value problem: classical results for games

187 / 359

Importance values: complexity results

Büchi Rabin Streett Parity LTL

Value
problem P NP coNP ∈ NP ∩ coNP 2EXP

Usefulness
problem NP ΣP

2 ΣP
2 NP 2EXP

Importance
problem #P #PNP #PNP #P 2EXP

NP-completeness of the usefulness problem for Büchi conditions

• upper bound via guess-&-check method
nondeterministically guess a set CCC and check whether (C , s)(C , s)(C , s) is relevant
(with poly-time algorithm for Büchi games)

• NP-hardness via reduction from 3SAT
188 / 359

Importance values: complexity results

Büchi Rabin Streett Parity LTL

Value
problem P NP coNP ∈ NP ∩ coNP 2EXP

Usefulness
problem NP ΣP

2 ΣP
2 NP 2EXP

Importance
problem #P #PNP #PNP #P 2EXP

Σp
2-completeness of the usefulness problem for Rabin conditions

• upper bound via guess-&-check method
nondeterministically guess a set CCC and check whether (C , s)(C , s)(C , s) is relevant
(with NP-oracle for Rabin games)

• Σp
2-hardness via reduction from dual of ∀∃3SAT

189 / 359

Break

190 / 359

Outline

• Introduction

• Necessary and sufficient causes

• Counterfactuality and responsibility in verification

• Probabilistic causality in Markovian models

• Conclusions

191 / 359

Probabilistic causality

... extensively studied in philosophy

, but also in AI

Reichenbach (1956)
Suppes (1970)
and many more

Judea Pearl

Turing Award
Winner 2011

taken from Judea Pearl’s homepage
UCLA Cognitive Systems Laboratory

192 / 359

Probabilistic causality

... extensively studied in philosophy

, but also in AI

Reichenbach (1956)
Suppes (1970)
and many more

05/06/2022, 14:17

Friends of the SEP Society - Preview of Hans Reichenbach PDF

https://le
ibniz.stanford.edu/friends/preview/reichenbach/

1/1

Join
| Log In | Help
Hans Reichenbach [PDF Preview]

This PDF version matches the latest version of this entry.

To view the PDF, you must
Log In or Become a Member.
You can also read more about the Friends of the

SEP Society.

Open the HTML version of this Entry: https://plato.stanford.edu/entries/reichenbach/

Copyright © 2021 •
The Metaphysics Research Lab

Department of Philosophy,
Stanford University
, Stanford, CA 94305

Judea Pearl

Turing Award
Winner 2011

taken from Judea Pearl’s homepage
UCLA Cognitive Systems Laboratory

193 / 359

Probabilistic causality

... extensively studied in philosophy, but also in AI

Reichenbach (1956)
Suppes (1970)
and many more

Judea Pearl

Turing Award
Winner 2011

taken from Judea Pearl’s homepage
UCLA Cognitive Systems Laboratory

194 / 359

Probabilistic causality

... extensively studied in philosophy, but also in AI

Two main principles:

Temporal condition:

Causes occur before their effects.

Probability-raising condition:

Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect | ¬cause)Pr(effect | ¬cause)Pr(effect | ¬cause)xxx

equivalently: Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect)Pr(effect)Pr(effect)

probabilistic form of counterfactuality:
“effects are less likely if their causes do not occur”

195 / 359

Probabilistic causality

... extensively studied in philosophy, but also in AI

Two main principles:

Temporal condition:

Causes occur before their effects.

Probability-raising condition:

Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect | ¬cause)Pr(effect | ¬cause)Pr(effect | ¬cause)xxx

equivalently: Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect)Pr(effect)Pr(effect)

probabilistic form of counterfactuality:
“effects are less likely if their causes do not occur”

196 / 359

Probabilistic causality

... extensively studied in philosophy, but also in AI

Two main principles:

Temporal condition:

Causes occur before their effects.

Probability-raising condition:

Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect | ¬cause)Pr(effect | ¬cause)Pr(effect | ¬cause)

xxx

equivalently: Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect)Pr(effect)Pr(effect)

probabilistic form of counterfactuality:
“effects are less likely if their causes do not occur”

197 / 359

Probabilistic causality

... extensively studied in philosophy, but also in AI

Two main principles:

Temporal condition:

Causes occur before their effects.

Probability-raising condition:

Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect | ¬cause)Pr(effect | ¬cause)Pr(effect | ¬cause)xxx
equivalently: Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect)Pr(effect)Pr(effect)

probabilistic form of counterfactuality:
“effects are less likely if their causes do not occur”

198 / 359

Probabilistic causality

... extensively studied in philosophy, but also in AI

Two main principles:

Temporal condition:

Causes occur before their effects.

Probability-raising condition:

Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect | ¬cause)Pr(effect | ¬cause)Pr(effect | ¬cause)xxx

equivalently: Pr(effect | cause)Pr(effect | cause)Pr(effect | cause) >>> Pr(effect)Pr(effect)Pr(effect)

probabilistic form of counterfactuality:
“effects are less likely if their causes do not occur”

199 / 359

Probabilistic causality in operational models

Only very few research so far:

• formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

• formalization as probabilistic hyperproperties

in Markov chains [Ábrahám/Bonakdarpour, QEST’18]

in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA’20]

• cause-effect relations for regular causes and ω-regular effects in
Markov chains [B./Funke/Jantsch/Piribauer/Ziemek, ATVA’21]

• cause-effect relations for sets of states in Markov decision
processes [B./Funke/Piribauer/Ziemek, FoSSaCS’22]

200 / 359

Probabilistic causality in operational models

Only very few research so far:

• formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

• formalization as probabilistic hyperproperties

in Markov chains [Ábrahám/Bonakdarpour, QEST’18]

in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA’20]

• cause-effect relations for regular causes and ω-regular effects in
Markov chains [B./Funke/Jantsch/Piribauer/Ziemek, ATVA’21]

• cause-effect relations for sets of states in Markov decision
processes [B./Funke/Piribauer/Ziemek, FoSSaCS’22]

PCTL: probabilistic computation tree logic
201 / 359

Probabilistic causality in operational models

Only very few research so far:

• formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

• formalization as probabilistic hyperproperties

in Markov chains [Ábrahám/Bonakdarpour, QEST’18]

in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA’20]

• cause-effect relations for regular causes and ω-regular effects in
Markov chains [B./Funke/Jantsch/Piribauer/Ziemek, ATVA’21]

• cause-effect relations for sets of states in Markov decision
processes [B./Funke/Piribauer/Ziemek, FoSSaCS’22]

PCTL: probabilistic computation tree logic
202 / 359

Probabilistic causality in operational models

Only very few research so far:

• formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

• formalization as probabilistic hyperproperties

in Markov chains [Ábrahám/Bonakdarpour, QEST’18]

in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA’20]

• cause-effect relations for regular causes and ω-regular effects in
Markov chains [B./Funke/Jantsch/Piribauer/Ziemek, ATVA’21]

• cause-effect relations for sets of states in Markov decision
processes [B./Funke/Piribauer/Ziemek, FoSSaCS’22]

PCTL: probabilistic computation tree logic
203 / 359

Probabilistic causality in operational models

Only very few research so far:

• formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

• formalization as probabilistic hyperproperties

in Markov chains [Ábrahám/Bonakdarpour, QEST’18]

in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA’20]

• cause-effect relations for regular causes and ω-regular effects in
Markov chains [B./Funke/Jantsch/Piribauer/Ziemek, ATVA’21]

• cause-effect relations for sets of states in Markov decision
processes [B./Funke/Piribauer/Ziemek, FoSSaCS’22]

204 / 359

Probabilistic causality in operational models

Only very few research so far:

• formalization for sets of states by PCTL-constraints in Markov
chains [Kleinberg, PhD thesis 2010]

• formalization as probabilistic hyperproperties

in Markov chains [Ábrahám/Bonakdarpour, QEST’18]

in Markov decision processes [Dimitrova/Finkbeiner/Torfah, ATVA’20]

• cause-effect relations for regular causes and ω-regular effects in
Markov chains [B./Funke/Jantsch/Piribauer/Ziemek, ATVA’21]

• cause-effect relations for sets of states in Markov decision
processes [B./Funke/Piribauer/Ziemek, FoSSaCS’22]

205 / 359

Probabilistic causality in Markov chains

In what follows: MMM is a (discrete-time) Markov chain with

• finite state space SSS

• initial distribution ι : S → [0, 1]ι : S → [0, 1]ι : S → [0, 1] such that every state in SSS is
accessible from at least one initial state (i.e., a state sss with ι(s) > 0ι(s) > 0ι(s) > 0)

• a fixed nonempty set EEE of effect states

W.l.o.g. all EEE -states are terminal (i.e., do not have outgoing transitions).

PrM(♢E)PrM(♢E)PrM(♢E) effect probability inMMM

===
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)

Prs(♢E)Prs(♢E)Prs(♢E) effect probability from state sss

206 / 359

Probabilistic causality in Markov chains

In what follows: MMM is a (discrete-time) Markov chain with

• finite state space SSS

• initial distribution ι : S → [0, 1]ι : S → [0, 1]ι : S → [0, 1] such that every state in SSS is
accessible from at least one initial state (i.e., a state sss with ι(s) > 0ι(s) > 0ι(s) > 0)

• a fixed nonempty set EEE of effect states

W.l.o.g. all EEE -states are terminal (i.e., do not have outgoing transitions).

PrM(♢E)PrM(♢E)PrM(♢E) effect probability inMMM

===
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)

Prs(♢E)Prs(♢E)Prs(♢E) effect probability from state sss

207 / 359

Probabilistic causality in Markov chains

In what follows: MMM is a (discrete-time) Markov chain with

• finite state space SSS

• initial distribution ι : S → [0, 1]ι : S → [0, 1]ι : S → [0, 1] such that every state in SSS is
accessible from at least one initial state (i.e., a state sss with ι(s) > 0ι(s) > 0ι(s) > 0)

• a fixed nonempty set EEE of effect states

W.l.o.g. all EEE -states are terminal (i.e., do not have outgoing transitions).

PrM(♢E)PrM(♢E)PrM(♢E) effect probability inMMM

===
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)

Prs(♢E)Prs(♢E)Prs(♢E) effect probability from state sss

208 / 359

Probabilistic causality in Markov chains

In what follows: MMM is a (discrete-time) Markov chain with

• finite state space SSS

• initial distribution ι : S → [0, 1]ι : S → [0, 1]ι : S → [0, 1] such that every state in SSS is
accessible from at least one initial state (i.e., a state sss with ι(s) > 0ι(s) > 0ι(s) > 0)

• a fixed nonempty set EEE of effect states

W.l.o.g. all EEE -states are terminal (i.e., do not have outgoing transitions).

PrM(♢E)PrM(♢E)PrM(♢E) effect probability inMMM

===
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)

Prs(♢E)Prs(♢E)Prs(♢E) effect probability from state sss

209 / 359

Probabilistic causality in Markov chains

In what follows: MMM is a (discrete-time) Markov chain with

• finite state space SSS

• initial distribution ι : S → [0, 1]ι : S → [0, 1]ι : S → [0, 1] such that every state in SSS is
accessible from at least one initial state (i.e., a state sss with ι(s) > 0ι(s) > 0ι(s) > 0)

• a fixed nonempty set EEE of effect states

W.l.o.g. all EEE -states are terminal (i.e., do not have outgoing transitions).

PrM(♢E)PrM(♢E)PrM(♢E) effect probability inMMM ===
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)
∑
s∈S

ι(s) · Prs(♢E)

Prs(♢E)Prs(♢E)Prs(♢E) effect probability from state sss

210 / 359

PCTL-characterization of causality in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

CCC is called a (prima facie) cause for EEE if there exists p ∈]0, 1]p ∈]0, 1]p ∈]0, 1] s.t.

M |= P<p(♢E)M |= P<p(♢E)M |= P<p(♢E) and M |= ∀□
(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)

︸ ︷︷ ︸ ︸ ︷︷ ︸
PrM(♢E) < pPrM(♢E) < pPrM(♢E) < p Prs(♢E) ⩾ pPrs(♢E) ⩾ pPrs(♢E) ⩾ p

for all s ∈ Cs ∈ Cs ∈ C

[Kleinberg, PhD thesis 2010]

PCTL: probabilistic computation logic

Thus:

CCC cause for EEE iff PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E) for all s ∈ Cs ∈ Cs ∈ C

iff PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

strict probability-raising condition
(elementwise for all CCC -states)

211 / 359

PCTL-characterization of causality in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

CCC is called a (prima facie) cause for EEE if there exists p ∈]0, 1]p ∈]0, 1]p ∈]0, 1] s.t.

M |= P<p(♢E)M |= P<p(♢E)M |= P<p(♢E) and M |= ∀□
(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)

︸ ︷︷ ︸ ︸ ︷︷ ︸
PrM(♢E) < pPrM(♢E) < pPrM(♢E) < p Prs(♢E) ⩾ pPrs(♢E) ⩾ pPrs(♢E) ⩾ p

for all s ∈ Cs ∈ Cs ∈ C

[Kleinberg, PhD thesis 2010]

PCTL: probabilistic computation logic

Thus:

CCC cause for EEE iff PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E) for all s ∈ Cs ∈ Cs ∈ C

iff PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

strict probability-raising condition
(elementwise for all CCC -states)

212 / 359

PCTL-characterization of causality in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

CCC is called a (prima facie) cause for EEE if there exists p ∈]0, 1]p ∈]0, 1]p ∈]0, 1] s.t.

M |= P<p(♢E)M |= P<p(♢E)M |= P<p(♢E) and M |= ∀□
(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)︸ ︷︷ ︸

︸ ︷︷ ︸

PrM(♢E) < pPrM(♢E) < pPrM(♢E) < p

Prs(♢E) ⩾ pPrs(♢E) ⩾ pPrs(♢E) ⩾ p
for all s ∈ Cs ∈ Cs ∈ C

[Kleinberg, PhD thesis 2010]

PCTL: probabilistic computation logic

Thus:

CCC cause for EEE iff PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E) for all s ∈ Cs ∈ Cs ∈ C

iff PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

strict probability-raising condition
(elementwise for all CCC -states)

213 / 359

PCTL-characterization of causality in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

CCC is called a (prima facie) cause for EEE if there exists p ∈]0, 1]p ∈]0, 1]p ∈]0, 1] s.t.

M |= P<p(♢E)M |= P<p(♢E)M |= P<p(♢E) and M |= ∀□
(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)︸ ︷︷ ︸ ︸ ︷︷ ︸
PrM(♢E) < pPrM(♢E) < pPrM(♢E) < p Prs(♢E) ⩾ pPrs(♢E) ⩾ pPrs(♢E) ⩾ p

for all s ∈ Cs ∈ Cs ∈ C

[Kleinberg, PhD thesis 2010]

PCTL: probabilistic computation logic

Thus:

CCC cause for EEE iff PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E) for all s ∈ Cs ∈ Cs ∈ C

iff PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

strict probability-raising condition
(elementwise for all CCC -states)

214 / 359

PCTL-characterization of causality in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

CCC is called a (prima facie) cause for EEE if there exists p ∈]0, 1]p ∈]0, 1]p ∈]0, 1] s.t.

M |= P<p(♢E)M |= P<p(♢E)M |= P<p(♢E) and M |= ∀□
(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)︸ ︷︷ ︸ ︸ ︷︷ ︸
PrM(♢E) < pPrM(♢E) < pPrM(♢E) < p Prs(♢E) ⩾ pPrs(♢E) ⩾ pPrs(♢E) ⩾ p

for all s ∈ Cs ∈ Cs ∈ CThus:

CCC cause for EEE iff PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E) for all s ∈ Cs ∈ Cs ∈ C

iff PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

strict probability-raising condition
(elementwise for all CCC -states)

215 / 359

PCTL-characterization of causality in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

CCC is called a (prima facie) cause for EEE if there exists p ∈]0, 1]p ∈]0, 1]p ∈]0, 1] s.t.

M |= P<p(♢E)M |= P<p(♢E)M |= P<p(♢E) and M |= ∀□
(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)︸ ︷︷ ︸ ︸ ︷︷ ︸
PrM(♢E) < pPrM(♢E) < pPrM(♢E) < p Prs(♢E) ⩾ pPrs(♢E) ⩾ pPrs(♢E) ⩾ p

for all s ∈ Cs ∈ Cs ∈ CThus:

CCC cause for EEE iff PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E) for all s ∈ Cs ∈ Cs ∈ C

iff PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

strict probability-raising condition
(elementwise for all CCC -states)

216 / 359

PCTL-characterization of causality in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

CCC is called a (prima facie) cause for EEE if there exists p ∈]0, 1]p ∈]0, 1]p ∈]0, 1] s.t.

M |= P<p(♢E)M |= P<p(♢E)M |= P<p(♢E) and M |= ∀□
(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)
M |= ∀□

(
C → P⩾p(♢E)

)︸ ︷︷ ︸ ︸ ︷︷ ︸
PrM(♢E) < pPrM(♢E) < pPrM(♢E) < p Prs(♢E) ⩾ pPrs(♢E) ⩾ pPrs(♢E) ⩾ p

for all s ∈ Cs ∈ Cs ∈ CThus:

CCC cause for EEE iff PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E)PrM(♢E) < Prs(♢E) for all s ∈ Cs ∈ Cs ∈ C

iff PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

strict probability-raising condition
(elementwise for all CCC -states)

217 / 359

Strict/global probability-raising causes in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

• CCC is a strict probability-raising (SPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

• CCC is a global probability-raising (GPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)

︸ ︷︷ ︸
Prs(♢E)Prs(♢E)Prs(♢E)

plus some minimality constraint (omitted here)

• Each SPR cause is a GPR cause.

• If CCC is a singleton then:

CCC is a SPR cause iff CCC is a GPR cause

218 / 359

Strict/global probability-raising causes in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

• CCC is a strict probability-raising (SPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

• CCC is a global probability-raising (GPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)︸ ︷︷ ︸
conditional probability∑

s∈C

PrM((¬C) U s) · Prs(♢E)

PrM(♢C)

∑
s∈C

PrM((¬C) U s) · Prs(♢E)

PrM(♢C)

∑
s∈C

PrM((¬C) U s) · Prs(♢E)

PrM(♢C)

plus some minimality constraint (omitted here)

• Each SPR cause is a GPR cause.

• If CCC is a singleton then:

CCC is a SPR cause iff CCC is a GPR cause

219 / 359

Strict/global probability-raising causes in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

• CCC is a strict probability-raising (SPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

• CCC is a global probability-raising (GPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)

plus some minimality constraint (omitted here)︸ ︷︷ ︸
“no C -state is fully covered by other C -states”

i.e., for each state s ∈ C there is a path π in M with π |= (¬C)U s.

• Each SPR cause is a GPR cause.

• If CCC is a singleton then:

CCC is a SPR cause iff CCC is a GPR cause

220 / 359

Strict/global probability-raising causes in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

• CCC is a strict probability-raising (SPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

• CCC is a global probability-raising (GPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)

plus some minimality constraint (omitted here)

• Each SPR cause is a GPR cause.

• If CCC is a singleton then:

CCC is a SPR cause iff CCC is a GPR cause

221 / 359

Strict/global probability-raising causes in MC

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅.

• CCC is a strict probability-raising (SPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s)PrM(♢E) < PrM(♢E |♢s) for all s ∈ Cs ∈ Cs ∈ C

• CCC is a global probability-raising (GPR) cause for EEE iff

PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)PrM(♢E) < PrM(♢E |♢C)

plus some minimality constraint (omitted here)

• Each SPR cause is a GPR cause.

• If CCC is a singleton then:

CCC is a SPR cause iff CCC is a GPR cause
222 / 359

Example: PR cause in MC

'

S

ez

÷ ! →

MCMMM with unique initial state sss

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}

PrM(♢E) = 1
3 +

1
3·

1
4 +

1
12 = 1

2
PrM(♢E) = 1

3 +
1
3·

1
4 +

1
12 = 1

2PrM(♢E) = 1
3 +

1
3 ·

1
4 +

1
12 = 1

2

C = {c1, c2}C = {c1, c2}C = {c1, c2}

• CCC is not an SPR cause as Prc1(♢E) =
1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)

• CCC is a GPR cause as

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) ===
1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

===
5
12
2
3

5
12
2
3

5
12
2
3

=== 5
8
5
8
5
8 >>> 1

2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

223 / 359

Example: PR cause in MC

'

S

ez

÷ ! →

MCMMM with unique initial state sss

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
PrM(♢E) = 1

3 +
1
3·

1
4 +

1
12 = 1

2
PrM(♢E) = 1

3 +
1
3 ·

1
4 +

1
12 = 1

2PrM(♢E) = 1
3 +

1
3 ·

1
4 +

1
12 = 1

2

C = {c1, c2}C = {c1, c2}C = {c1, c2}

• CCC is not an SPR cause as Prc1(♢E) =
1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)

• CCC is a GPR cause as

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) ===
1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

===
5
12
2
3

5
12
2
3

5
12
2
3

=== 5
8
5
8
5
8 >>> 1

2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

224 / 359

Example: PR cause in MC

'

S

ez

÷ ! →

MCMMM with unique initial state sss

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
PrM(♢E) = 1

3 +
1
3·

1
4 +

1
12 = 1

2
PrM(♢E) = 1

3 +
1
3 ·

1
4 +

1
12 = 1

2PrM(♢E) = 1
3 +

1
3 ·

1
4 +

1
12 = 1

2

C = {c1, c2}C = {c1, c2}C = {c1, c2}

• CCC is not an SPR cause as Prc1(♢E) =
1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)

• CCC is a GPR cause as

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) ===
1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

===
5
12
2
3

5
12
2
3

5
12
2
3

=== 5
8
5
8
5
8 >>> 1

2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

225 / 359

Example: PR cause in MC

'

S

ez

÷ ! →

MCMMM with unique initial state sss

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
PrM(♢E) = 1

3 +
1
3·

1
4 +

1
12 = 1

2
PrM(♢E) = 1

3 +
1
3 ·

1
4 +

1
12 = 1

2PrM(♢E) = 1
3 +

1
3 ·

1
4 +

1
12 = 1

2

C = {c1, c2}C = {c1, c2}C = {c1, c2}

• CCC is not an SPR cause as Prc1(♢E) =
1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)

• CCC is a GPR cause as

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) ===
1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

===
5
12
2
3

5
12
2
3

5
12
2
3

=== 5
8
5
8
5
8 >>> 1

2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

226 / 359

Example: PR cause in MC

'

S

ez

÷ ! →

MCMMM with unique initial state sss

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
PrM(♢E) = 1

3 +
1
3·

1
4 +

1
12 = 1

2
PrM(♢E) = 1

3 +
1
3 ·

1
4 +

1
12 = 1

2PrM(♢E) = 1
3 +

1
3 ·

1
4 +

1
12 = 1

2

C = {c1, c2}C = {c1, c2}C = {c1, c2}

• CCC is not an SPR cause as Prc1(♢E) =
1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)Prc1(♢E) =

1
4 <

1
2 = PrM(♢E)

• CCC is a GPR cause as

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) ===
1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

1
3+

1
3 ·

1
4

1
3+

1
3

===
5
12
2
3

5
12
2
3

5
12
2
3

=== 5
8
5
8
5
8 >>> 1

2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

227 / 359

Example: PR cause in MC

sz
ÄR

⇐ ¥ %¥
es tn eh tz

MCMMM with unique initial state s1s1s1

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}

PrM(♢E) = Prs(♢E) = 1
2

PrM(♢E) = Prs(♢E) = 1
2PrM(♢E) = Prs(♢E) = 1
2

for each state s ∈ {s1, s2, s3}s ∈ {s1, s2, s3}s ∈ {s1, s2, s3}

There is no GPR cause as for any C ⊆ {s1, s2, s3}C ⊆ {s1, s2, s3}C ⊆ {s1, s2, s3}:

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) === 1
2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

Well justified, as the events ♢E♢E♢E and ♢C♢C♢C are stochastically
independent for any CCC .

228 / 359

Example: PR cause in MC

sz
ÄR

⇐ ¥ %¥
es tn eh tz

MCMMM with unique initial state s1s1s1

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}

PrM(♢E) = Prs(♢E) = 1
2

PrM(♢E) = Prs(♢E) = 1
2PrM(♢E) = Prs(♢E) = 1
2

for each state s ∈ {s1, s2, s3}s ∈ {s1, s2, s3}s ∈ {s1, s2, s3}

There is no GPR cause as for any C ⊆ {s1, s2, s3}C ⊆ {s1, s2, s3}C ⊆ {s1, s2, s3}:

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) === 1
2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

Well justified, as the events ♢E♢E♢E and ♢C♢C♢C are stochastically
independent for any CCC .

229 / 359

Example: PR cause in MC

sz
ÄR

⇐ ¥ %¥
es tn eh tz

MCMMM with unique initial state s1s1s1

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}

PrM(♢E) = Prs(♢E) = 1
2

PrM(♢E) = Prs(♢E) = 1
2PrM(♢E) = Prs(♢E) = 1
2

for each state s ∈ {s1, s2, s3}s ∈ {s1, s2, s3}s ∈ {s1, s2, s3}

There is no GPR cause as for any C ⊆ {s1, s2, s3}C ⊆ {s1, s2, s3}C ⊆ {s1, s2, s3}:

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) === 1
2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

Well justified, as the events ♢E♢E♢E and ♢C♢C♢C are stochastically
independent for any CCC .

230 / 359

Example: PR cause in MC

sz
ÄR

⇐ ¥ %¥
es tn eh tz

MCMMM with unique initial state s1s1s1

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}

PrM(♢E) = Prs(♢E) = 1
2

PrM(♢E) = Prs(♢E) = 1
2PrM(♢E) = Prs(♢E) = 1
2

for each state s ∈ {s1, s2, s3}s ∈ {s1, s2, s3}s ∈ {s1, s2, s3}

There is no GPR cause as for any C ⊆ {s1, s2, s3}C ⊆ {s1, s2, s3}C ⊆ {s1, s2, s3}:

PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C) === 1
2
1
2
1
2 === PrM(♢E)PrM(♢E)PrM(♢E)

Well justified, as the events ♢E♢E♢E and ♢C♢C♢C are stochastically
independent for any CCC .

231 / 359

Markov decision processes (MDP)

... extension of Markov chains by nondeterministic choices ...

• finite state space SSS with initial distribution ι : S → [0, 1]ι : S → [0, 1]ι : S → [0, 1]

• finite set of action ActActAct

• for each state s ∈ Ss ∈ Ss ∈ S :

⋆ Act(s)Act(s)Act(s): set of enabled
actions in state sss

⋆ for each action α ∈ Act(s)α ∈ Act(s)α ∈ Act(s):
distribution P s,α : S → [0, 1]P s,α : S → [0, 1]P s,α : S → [0, 1]

for the ααα-successors of sss

EA:

Scheduler (a.k.a. policy, adversary, strategy): resolves the nondeterminism

⋆ selects distributions over enabled actions (might be history-dependent)

⋆ induced stochastic process is a Markov chain (tree-like, possibly infinite)

232 / 359

Markov decision processes (MDP)

• finite state space SSS with initial distribution ι : S → [0, 1]ι : S → [0, 1]ι : S → [0, 1]

• finite set of action ActActAct

• for each state s ∈ Ss ∈ Ss ∈ S :

⋆ Act(s)Act(s)Act(s): set of enabled
actions in state sss

⋆ for each action α ∈ Act(s)α ∈ Act(s)α ∈ Act(s):
distribution P s,α : S → [0, 1]P s,α : S → [0, 1]P s,α : S → [0, 1]
for the ααα-successors of sss

EA:

Scheduler (a.k.a. policy, adversary, strategy): resolves the nondeterminism

⋆ selects distributions over enabled actions (might be history-dependent)

⋆ induced stochastic process is a Markov chain (tree-like, possibly infinite)

233 / 359

Markov decision processes (MDP)

• finite state space SSS with initial distribution ι : S → [0, 1]ι : S → [0, 1]ι : S → [0, 1]

• finite set of action ActActAct

• for each state s ∈ Ss ∈ Ss ∈ S :

⋆ Act(s)Act(s)Act(s): set of enabled
actions in state sss

⋆ for each action α ∈ Act(s)α ∈ Act(s)α ∈ Act(s):
distribution P s,α : S → [0, 1]P s,α : S → [0, 1]P s,α : S → [0, 1]

for the ααα-successors of sss

EA:

Scheduler (a.k.a. policy, adversary, strategy): resolves the nondeterminism

⋆ selects distributions over enabled actions (might be history-dependent)

⋆ induced stochastic process is a Markov chain (tree-like, possibly infinite)
234 / 359

PR causes in MDPs

... generalize the definition of SPR and GPR causes for MDPs ...

Assumptions: given an MDPMMM with state space SSS and:

• fixed effect set EEE consisting of terminal states
(i.e., have no enabled action)

• all states in SSS are reachable from at least one initial state

• all states in SSS from which EEE is not reachable are terminal

235 / 359

PR causes in MDPs

... generalize the definition of SPR and GPR causes for MDPs ...

Assumptions: given an MDPMMM with state space SSS and:

• fixed effect set EEE consisting of terminal states
(i.e., have no enabled action)

• all states in SSS are reachable from at least one initial state

• all states in SSS from which EEE is not reachable are terminal

236 / 359

PR causes in MDPs

... generalize the definition of SPR and GPR causes for MDPs ...

Assumptions: given an MDPMMM with state space SSS and:

• fixed effect set EEE consisting of terminal states
(i.e., have no enabled action)

• all states in SSS are reachable from at least one initial state

• all states in SSS from which EEE is not reachable are terminal

237 / 359

PR causes in MDPs

... generalize the definition of SPR and GPR causes for MDPs ...

Assumptions: given an MDPMMM with state space SSS and:

• fixed effect set EEE consisting of terminal states
(i.e., have no enabled action)

• all states in SSS are reachable from at least one initial state

• all states in SSS from which EEE is not reachable are terminal

238 / 359

PR causes in MCs (repetition)

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is a

• SPR cause for EEE iff for all s ∈ Cs ∈ Cs ∈ C

PrM(♢E)PrM(♢E)PrM(♢E) <<< PrM(♢E |♢s)PrM(♢E |♢s)PrM(♢E |♢s)

• GPR cause for EEE iff

PrM(♢E)PrM(♢E)PrM(♢E) <<< PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C)

SPR: strict probability-raising
GPR: global probability-raising

239 / 359

PR causes in MCs (repetition)

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is a

• SPR cause for EEE iff for all s ∈ Cs ∈ Cs ∈ C

PrM(♢E)PrM(♢E)PrM(♢E) <<< PrM(♢E | (¬C) U s)PrM(♢E | (¬C) U s)PrM(♢E | (¬C) U s)

• GPR cause for EEE iff

PrM(♢E)PrM(♢E)PrM(♢E) <<< PrM(♢E |♢C)PrM(♢E |♢C)PrM(♢E |♢C)

SPR: strict probability-raising
GPR: global probability-raising

240 / 359

PR causes in MDPs

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is a

• SPR cause for EEE iff for all s ∈ Cs ∈ Cs ∈ C and all schedulers σσσ:

PrσM(♢E)PrσM(♢E)PrσM(♢E) <<< PrσM(♢E | (¬C) U s)PrσM(♢E | (¬C) U s)PrσM(♢E | (¬C) U s)

if PrσM(¬C) U s) > 0PrσM(¬C) U s) > 0PrσM(¬C) U s) > 0

• GPR cause for EEE iff for all schedulers σσσ:

PrσM(♢E)PrσM(♢E)PrσM(♢E) <<< PrσM(♢E |♢C)PrσM(♢E |♢C)PrσM(♢E |♢C)

if PrσM(♢C) > 0PrσM(♢C) > 0PrσM(♢C) > 0

PrσM(...)PrσM(...)PrσM(...) =

{
probability measure of the Markov chain
induced by scheduler σσσ

241 / 359

PR causes in MDPs

Let CCC a set of states with C ∩ E = ∅C ∩ E = ∅C ∩ E = ∅. CCC is a

• SPR cause for EEE iff for all s ∈ Cs ∈ Cs ∈ C and all schedulers σσσ:

PrσM(♢E)PrσM(♢E)PrσM(♢E) <<< PrσM(♢E | (¬C) U s)PrσM(♢E | (¬C) U s)PrσM(♢E | (¬C) U s) if PrσM(¬C) U s) > 0PrσM(¬C) U s) > 0PrσM(¬C) U s) > 0

• GPR cause for EEE iff for all schedulers σσσ:

PrσM(♢E)PrσM(♢E)PrσM(♢E) <<< PrσM(♢E |♢C)PrσM(♢E |♢C)PrσM(♢E |♢C) if PrσM(♢C) > 0PrσM(♢C) > 0PrσM(♢C) > 0

PrσM(...) =

{
probability measure of the Markov chain
induced by scheduler σ

242 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}

Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider the scheduler σσσ that schedules βββ for the first visit of sss and
ααα for the second visit of sss.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·

1
2 +

1
2·

1
2 ·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2 ·1·

1
4

1
2·

1
2 +

1
2·

1
2 ·1·

1
4 === 5

16
5
16
5
16

>>> 1
4
1
4
1
4 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

243 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider the scheduler σσσ that schedules βββ for the first visit of sss and
ααα for the second visit of sss.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·

1
2 +

1
2·

1
2 ·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2 ·1·

1
4

1
2·

1
2 +

1
2·

1
2 ·1·

1
4 === 5

16
5
16
5
16

>>> 1
4
1
4
1
4 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

244 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No

, although PR condition holds for
all memoryless schedulers

Consider the scheduler σσσ that schedules βββ for the first visit of sss and
ααα for the second visit of sss.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·

1
2 +

1
2·

1
2·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2·1·

1
4

1
2·

1
2 +

1
2·

1
2 ·1·

1
4 === 5

16
5
16
5
16

>>> 1
4
1
4
1
4 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

245 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No

, although PR condition holds for
all memoryless schedulers

Consider the scheduler σσσ that schedules βββ for the first visit of sss and
ααα for the second visit of sss.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·

1
2 +

1
2·

1
2·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2·1·

1
4

1
2·

1
2 +

1
2·

1
2 ·1·

1
4 === 5

16
5
16
5
16

>>> 1
4
1
4
1
4 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

246 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No

, although PR condition holds for
all memoryless schedulers

Consider the scheduler σσσ that schedules βββ for the first visit of sss and
ααα for the second visit of sss.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·

1
2 +

1
2 ·

1
2 ·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2 ·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2 ·1·

1
4 === 5

16
5
16
5
16

>>> 1
4
1
4
1
4 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

247 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No

, although PR condition holds for
all memoryless schedulers

Consider the scheduler σσσ that schedules βββ for the first visit of sss and
ααα for the second visit of sss.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·

1
2 +

1
2 ·

1
2 ·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2 ·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2 ·1·

1
4 === 5

16
5
16
5
16 >>> 1

4
1
4
1
4 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

248 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider the scheduler σ that schedules β for the first visit of s and
α for the second visit of s.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·

1
2 +

1
2 ·

1
2 ·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2 ·1·

1
4

1
2 ·

1
2 +

1
2 ·

1
2 ·1·

1
4 === 5

16
5
16
5
16 >>> 1

4
1
4
1
4 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

249 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

MR = memoryless randomized

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

250 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

<<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!

251 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E) <<< Prσs (♢E)Prσs (♢E)Prσs (♢E)

=== Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

︸ ︷︷ ︸
some positive

value

Consequence: Memory can be needed for refuting the PR condition!

252 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E) <<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E)

=== PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

︸ ︷︷ ︸
some positive

value

Consequence: Memory can be needed for refuting the PR condition!

253 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E) <<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)︸ ︷︷ ︸

some positive
value

Consequence: Memory can be needed for refuting the PR condition!

254 / 359

Example: PR cause in MDP

?⃝ •

:

"

e

MDPMMM with unique initial state iii

effect set E = {e}E = {e}E = {e}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all memoryless schedulers

Consider MR-scheduler σ = σλσ = σλσ = σλ with σ(s)(α) = λσ(s)(α) = λσ(s)(α) = λ and σ(s)(β) = 1−λσ(s)(β) = 1−λσ(s)(β) = 1−λ.

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E)

1
2 ·Pr

σ
s (♢E) <<< Prσs (♢E)Prσs (♢E)Prσs (♢E) === Prσc (♢E)Prσc (♢E)Prσc (♢E) === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consequence: Memory can be needed for refuting the PR condition!
255 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}

Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the scheduler σσσ that schedules ααα and βββ with probability 1/2
in state iii .

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2 +

1
2·

1
2 ·

1
2

1
2 +

1
2·

1
2·

1
2

1
2 +

1
2 ·

1
2 ·

1
2 === 5

8
5
8
5
8

>>> 1
2
1
2
1
2 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2·

1
2

1
2 ·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

256 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the scheduler σσσ that schedules ααα and βββ with probability 1/2
in state iii .

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2 +

1
2·

1
2 ·

1
2

1
2 +

1
2·

1
2·

1
2

1
2 +

1
2 ·

1
2 ·

1
2 === 5

8
5
8
5
8

>>> 1
2
1
2
1
2 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2·

1
2

1
2 ·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

257 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No

, although PR condition holds for
all deterministic schedulers

Consider the scheduler σσσ that schedules ααα and βββ with probability 1/2
in state iii .

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2 +

1
2·

1
2 ·

1
2

1
2 +

1
2·

1
2·

1
2

1
2 +

1
2 ·

1
2 ·

1
2 === 5

8
5
8
5
8

>>> 1
2
1
2
1
2 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2·

1
2

1
2 ·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

258 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No

, although PR condition holds for
all deterministic schedulers

Consider the scheduler σσσ that schedules ααα and βββ with probability 1/2
in state iii .

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2 +

1
2·

1
2 ·

1
2

1
2 +

1
2·

1
2·

1
2

1
2 +

1
2 ·

1
2 ·

1
2 === 5

8
5
8
5
8

>>> 1
2
1
2
1
2 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2·

1
2

1
2 ·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

259 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No

, although PR condition holds for
all deterministic schedulers

Consider the scheduler σσσ that schedules ααα and βββ with probability 1/2
in state iii .

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2 +

1
2 ·

1
2 ·

1
2

1
2 +

1
2 ·

1
2·

1
2

1
2 +

1
2 ·

1
2 ·

1
2 === 5

8
5
8
5
8

>>> 1
2
1
2
1
2 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2·

1
2

1
2 ·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

260 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No

, although PR condition holds for
all deterministic schedulers

Consider the scheduler σσσ that schedules ααα and βββ with probability 1/2
in state iii .

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2 +

1
2 ·

1
2 ·

1
2

1
2 +

1
2 ·

1
2·

1
2

1
2 +

1
2 ·

1
2 ·

1
2 === 5

8
5
8
5
8 >>> 1

2
1
2
1
2 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2·

1
2

1
2 ·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

261 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the scheduler σ that schedules α and β with probability 1/2
in state i .

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
2 +

1
2 ·

1
2 ·

1
2

1
2 +

1
2 ·

1
2·

1
2

1
2 +

1
2 ·

1
2 ·

1
2 === 5

8
5
8
5
8 >>> 1

2
1
2
1
2 === PrσM(♢E |♢c)PrσM(♢E |♢c)PrσM(♢E |♢c)

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2 ·

1
2

1
2·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

262 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2 ·

1
2

1
2·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

263 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2 ·

1
2

1
2·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

264 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2 ·

1
2

1
2 ·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!

265 / 359

Example: PR cause in MDP

i

e.

%

e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

No, although PR condition holds for
all deterministic schedulers

Consider the deterministic schedulers σασασα and σβσβσβ that schedule ααα
resp. βββ in state iii .

σασασα irrelevant for PR condition as state ccc is not reachable

Pr
σβ

M(♢E)Pr
σβ

M(♢E)Pr
σβ

M(♢E) === 1
2·

1
2

1
2 ·

1
2

1
2·

1
2 === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === Pr

σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)Pr
σβ

M(♢E |♢c)

...

...

...

Consequence: Randomization needed for refuting the PR condition!
266 / 359

Example: PR cause in MDP

i

EEE.rs
e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

Yes !!

Let σσσ be a scheduler with σ(i)(α) = λσ(i)(α) = λσ(i)(α) = λ and σ(i)(β) = 1−λσ(i)(β) = 1−λσ(i)(β) = 1−λ.
If λ = 1λ = 1λ = 1 then σσσ is irrelevant (as CCC is not reachable along σσσ-paths).

Otherwise:

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
4·λ+ 1

2·
1
2 ·(1−λ)

1
4·λ+ 1

2 ·
1
2·(1−λ)

1
4 ·λ+ 1

2 ·
1
2 ·(1−λ) === 1

4
1
4
1
4

<<< 1
2
1
2
1
2 === PrσM(♢E | ♢c)PrσM(♢E | ♢c)PrσM(♢E | ♢c)

267 / 359

Example: PR cause in MDP

i

EEE.rs
e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

Yes !!

Let σσσ be a scheduler with σ(i)(α) = λσ(i)(α) = λσ(i)(α) = λ and σ(i)(β) = 1−λσ(i)(β) = 1−λσ(i)(β) = 1−λ.

If λ = 1λ = 1λ = 1 then σσσ is irrelevant (as CCC is not reachable along σσσ-paths).

Otherwise:

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
4·λ+ 1

2·
1
2 ·(1−λ)

1
4·λ+ 1

2 ·
1
2·(1−λ)

1
4 ·λ+ 1

2 ·
1
2 ·(1−λ) === 1

4
1
4
1
4

<<< 1
2
1
2
1
2 === PrσM(♢E | ♢c)PrσM(♢E | ♢c)PrσM(♢E | ♢c)

268 / 359

Example: PR cause in MDP

i

EEE.rs
e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

Yes !!

Let σσσ be a scheduler with σ(i)(α) = λσ(i)(α) = λσ(i)(α) = λ and σ(i)(β) = 1−λσ(i)(β) = 1−λσ(i)(β) = 1−λ.
If λ = 1λ = 1λ = 1 then σσσ is irrelevant (as CCC is not reachable along σσσ-paths).

Otherwise:

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
4·λ+ 1

2·
1
2 ·(1−λ)

1
4 ·λ+ 1

2 ·
1
2·(1−λ)

1
4 ·λ+ 1

2 ·
1
2 ·(1−λ) === 1

4
1
4
1
4

<<< 1
2
1
2
1
2 === PrσM(♢E | ♢c)PrσM(♢E | ♢c)PrσM(♢E | ♢c)

269 / 359

Example: PR cause in MDP

i

EEE.rs
e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

Yes !!

Let σσσ be a scheduler with σ(i)(α) = λσ(i)(α) = λσ(i)(α) = λ and σ(i)(β) = 1−λσ(i)(β) = 1−λσ(i)(β) = 1−λ.
If λ = 1λ = 1λ = 1 then σσσ is irrelevant (as CCC is not reachable along σσσ-paths).Otherwise:

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
4 ·λ+ 1

2·
1
2 ·(1−λ)

1
4 ·λ+ 1

2 ·
1
2 ·(1−λ)

1
4 ·λ+ 1

2 ·
1
2 ·(1−λ) === 1

4
1
4
1
4

<<< 1
2
1
2
1
2 === PrσM(♢E | ♢c)PrσM(♢E | ♢c)PrσM(♢E | ♢c)

270 / 359

Example: PR cause in MDP

i

EEE.rs
e.

EHE

MDPMMM with unique initial state iii

effect set E = {e1, e2}E = {e1, e2}E = {e1, e2}
Is C = {c}C = {c}C = {c} a PR cause?

Yes !!

Let σσσ be a scheduler with σ(i)(α) = λσ(i)(α) = λσ(i)(α) = λ and σ(i)(β) = 1−λσ(i)(β) = 1−λσ(i)(β) = 1−λ.
If λ = 1λ = 1λ = 1 then σσσ is irrelevant (as CCC is not reachable along σσσ-paths).Otherwise:

PrσM(♢E)PrσM(♢E)PrσM(♢E) === 1
4 ·λ+ 1

2·
1
2 ·(1−λ)

1
4 ·λ+ 1

2 ·
1
2 ·(1−λ)

1
4 ·λ+ 1

2 ·
1
2 ·(1−λ) === 1

4
1
4
1
4 <<< 1

2
1
2
1
2 === PrσM(♢E | ♢c)PrσM(♢E | ♢c)PrσM(♢E | ♢c)

271 / 359

Algorithmic problems

Checking cause-effect relationships: GivenMMM,EEE ,CCC , check whether

• CCC is an SPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• CCC is a GPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: GivenMMM,EEE , determine a
PR cause CCC that is optimal w.r.t. to some coverage criterion.

272 / 359

Algorithmic problems

Checking cause-effect relationships:

GivenMMM,EEE ,CCC , check whether

• CCC is an SPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• CCC is a GPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects:

GivenMMM,EEE , determine a
PR cause CCC that is optimal w.r.t. to some coverage criterion.

273 / 359

Algorithmic problems

Checking cause-effect relationships:

GivenMMM,EEE ,CCC , check whether

• CCC is an SPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• CCC is a GPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: GivenMMM,EEE , determine a
PR cause CCC that is optimal w.r.t. to some coverage criterion.

274 / 359

Algorithmic problems

Checking cause-effect relationships: GivenMMM,EEE ,CCC , check whether

• CCC is an SPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• CCC is a GPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: GivenMMM,EEE , determine a
PR cause CCC that is optimal w.r.t. to some coverage criterion.

275 / 359

Algorithmic problems

Checking cause-effect relationships: GivenMMM,EEE ,CCC , check whether

• CCC is an SPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• CCC is a GPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: GivenMMM,EEE , determine a
PR cause CCC that is optimal w.r.t. to some coverage criterion.

276 / 359

Algorithmic problems

Checking cause-effect relationships: GivenMMM,EEE ,CCC , check whether

• CCC is an SPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• CCC is a GPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: GivenMMM,EEE , determine a
PR cause CCC that is optimal w.r.t. to some coverage criterion.

277 / 359

Algorithmic problems

Checking cause-effect relationships: GivenMMM,EEE ,CCC , check whether

• CCC is an SPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• CCC is a GPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: GivenMMM,EEE , determine a
PR cause CCC that is optimal w.r.t. to some coverage criterion.

278 / 359

Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

• with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

• if a cause candidate CCC is given: 4 types of terminal states

⋆ covered effect states: only accessible via CCC (TP)

⋆ uncovered effect states: not accessible from CCC (FN)

⋆ noneffect terminal states after CCC : only accessible via CCC (FP)

⋆ other noneffect terminal states: not accessible from CCC (TN)

and each c ∈ Cc ∈ Cc ∈ C has a single action with terminal successors
(a covered effect state with prob. pc = Prmin

c (♢E)pc = Prmin
c (♢E)pc = Prmin
c (♢E) and a noneffect state with prob. 1−pc1−pc1−pc)

TP: true positive

FN: false negative FP: false positive TN: true negative

279 / 359

Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

• with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

• if a cause candidate CCC is given: 4 types of terminal states

⋆ covered effect states: only accessible via CCC (TP)

⋆ uncovered effect states: not accessible from CCC (FN)

⋆ noneffect terminal states after CCC : only accessible via CCC (FP)

⋆ other noneffect terminal states: not accessible from CCC (TN)

and each c ∈ Cc ∈ Cc ∈ C has a single action with terminal successors
(a covered effect state with prob. pc = Prmin

c (♢E)pc = Prmin
c (♢E)pc = Prmin
c (♢E) and a noneffect state with prob. 1−pc1−pc1−pc)

TP: true positive

FN: false negative FP: false positive TN: true negative

280 / 359

Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

• with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

• if a cause candidate CCC is given: 4 types of terminal states
⋆ covered effect states: only accessible via CCC (TP)

⋆ uncovered effect states: not accessible from CCC (FN)

⋆ noneffect terminal states after CCC : only accessible via CCC (FP)

⋆ other noneffect terminal states: not accessible from CCC (TN)

and each c ∈ Cc ∈ Cc ∈ C has a single action with terminal successors
(a covered effect state with prob. pc = Prmin

c (♢E)pc = Prmin
c (♢E)pc = Prmin
c (♢E) and a noneffect state with prob. 1−pc1−pc1−pc)

TP: true positive

FN: false negative FP: false positive TN: true negative

281 / 359

Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

• with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

• if a cause candidate CCC is given: 4 types of terminal states
⋆ covered effect states: only accessible via CCC (TP)

⋆ uncovered effect states: not accessible from CCC (FN)

⋆ noneffect terminal states after CCC : only accessible via CCC (FP)

⋆ other noneffect terminal states: not accessible from CCC (TN)

and each c ∈ Cc ∈ Cc ∈ C has a single action with terminal successors
(a covered effect state with prob. pc = Prmin

c (♢E)pc = Prmin
c (♢E)pc = Prmin
c (♢E) and a noneffect state with prob. 1−pc1−pc1−pc)

TP: true positive FN: false negative

FP: false positive TN: true negative

282 / 359

Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

• with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

• if a cause candidate CCC is given: 4 types of terminal states
⋆ covered effect states: only accessible via CCC (TP)

⋆ uncovered effect states: not accessible from CCC (FN)

⋆ noneffect terminal states after CCC : only accessible via CCC (FP)

⋆ other noneffect terminal states: not accessible from CCC (TN)

and each c ∈ Cc ∈ Cc ∈ C has a single action with terminal successors
(a covered effect state with prob. pc = Prmin

c (♢E)pc = Prmin
c (♢E)pc = Prmin
c (♢E) and a noneffect state with prob. 1−pc1−pc1−pc)

TP: true positive FN: false negative FP: false positive

TN: true negative

283 / 359

Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

• with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

• if a cause candidate CCC is given: 4 types of terminal states
⋆ covered effect states: only accessible via CCC (TP)

⋆ uncovered effect states: not accessible from CCC (FN)

⋆ noneffect terminal states after CCC : only accessible via CCC (FP)

⋆ other noneffect terminal states: not accessible from CCC (TN)

and each c ∈ Cc ∈ Cc ∈ C has a single action with terminal successors
(a covered effect state with prob. pc = Prmin

c (♢E)pc = Prmin
c (♢E)pc = Prmin
c (♢E) and a noneffect state with prob. 1−pc1−pc1−pc)

TP: true positive FN: false negative FP: false positive TN: true negative
284 / 359

Model transformations

All algorithms rely on cause-effect preserving transformations to
translate the original MDP into an equivalent one:

• with a single initial state and without end components
i.e., under all schedulers a terminal state will eventually be reached a.s.

• if a cause candidate CCC is given: 4 types of terminal states
⋆ covered effect states: only accessible via CCC (TP)

⋆ uncovered effect states: not accessible from CCC (FN)

⋆ noneffect terminal states after CCC : only accessible via CCC (FP)

⋆ other noneffect terminal states: not accessible from CCC (TN)

and each c ∈ Cc ∈ Cc ∈ C has a single action with terminal successors
(a covered effect state with prob. pc = Prmin

c (♢E)pc = Prmin
c (♢E)pc = Prmin
c (♢E) and a noneffect state with prob. 1−pc1−pc1−pc)

TP: true positive FN: false negative FP: false positive TN: true negative

285 / 359

Model transformation

Structure of the transformed MDP
for fixed effect set EEE and
cause candidate CCC :

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB
286 / 359

Checking the SPR condition

Task: GivenMMM,EEE ,CCC , check whether CCC is an SPR cause.

Observation:

CCC is an SPR cause iff {c}{c}{c} is an SPR cause for each state c ∈ Cc ∈ Cc ∈ C

Existence of SPR or GPR causes:

there is an SPR cause

iff there is a singleton SPR cause

iff there is a singleton GPR cause

iff there is a GPR cause

287 / 359

Checking the SPR condition

Task: GivenMMM,EEE ,CCC , check whether CCC is an SPR cause.

Observation:

CCC is an SPR cause iff {c}{c}{c} is an SPR cause for each state c ∈ Cc ∈ Cc ∈ C

Existence of SPR or GPR causes:

there is an SPR cause

iff there is a singleton SPR cause

iff there is a singleton GPR cause

iff there is a GPR cause

288 / 359

Checking the SPR condition

Task: GivenMMM,EEE ,CCC , check whether CCC is an SPR cause.

Observation:

CCC is an SPR cause iff {c}{c}{c} is an SPR cause for each state c ∈ Cc ∈ Cc ∈ C

Existence of SPR or GPR causes:

there is an SPR cause

iff there is a singleton SPR cause

iff there is a singleton GPR cause

iff there is a GPR cause

289 / 359

Checking the SPR condition

Task: GivenMMM,EEE ,CCC , check whether CCC is an SPR cause.

Observation:

CCC is an SPR cause iff {c}{c}{c} is an SPR cause for each state c ∈ Cc ∈ Cc ∈ C

Existence of SPR or GPR causes:

there is an SPR cause

iff there is a singleton SPR cause

iff there is a singleton GPR cause

iff there is a GPR cause

290 / 359

Checking the SPR condition

Task: GivenMMM,EEE ,CCC , check whether CCC is an SPR cause.

Observation:

CCC is an SPR cause iff {c}{c}{c} is an SPR cause for each state c ∈ Cc ∈ Cc ∈ C

Existence of SPR or GPR causes:

there is an SPR cause

iff there is a singleton SPR cause

iff there is a singleton GPR cause

iff there is a GPR cause

291 / 359

Checking the SPR condition for singletons

Task: GivenMMM,EEE , ccc , check whether {c}{c}{c} is an SPR cause.

Observation:

C is an SPR cause iff {c} is an SPR cause for each state c ∈ C

Existence of SPR or GPR causes:

there is an SPR cause

iff there is a singleton SPR cause

iff there is a singleton GPR cause

iff there is a GPR cause

292 / 359

Checking the SPR condition for singletons

Task: GivenMMM,EEE , ccc , check whether {c}{c}{c} is an SPR cause.

Let NNN be the transformed MDP

where pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E).

Let q = Prmax
N (♢E)q = Prmax
N (♢E)q = Prmax
N (♢E).

If q < pcq < pcq < pc : SPR condition holds.

If q > pcq > pcq > pc : SPR condition does not hold.

If q = pcq = pcq = pc :

SPR condition holds iffMMM has no
scheduler maximizing the effect probability
that reaches ccc

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB
293 / 359

Checking the SPR condition for singletons

Task: GivenMMM,EEE , ccc , check whether {c}{c}{c} is an SPR cause.

Let NNN be the transformed MDP

where pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E).

Let q = Prmax
N (♢E)q = Prmax
N (♢E)q = Prmax
N (♢E).

If q < pcq < pcq < pc : SPR condition holds.

If q > pcq > pcq > pc : SPR condition does not hold.

If q = pcq = pcq = pc :

SPR condition holds iffMMM has no
scheduler maximizing the effect probability
that reaches ccc

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB

pcpcpc === PrσN ,c(♢E | ♢c)PrσN ,c(♢E | ♢c)PrσN ,c(♢E | ♢c)

for each scheduler σσσ in NNN
that reaches ccc

294 / 359

Checking the SPR condition for singletons

Task: GivenMMM,EEE , ccc , check whether {c}{c}{c} is an SPR cause.

Let NNN be the transformed MDP

where pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E).

Let q = Prmax
N (♢E)q = Prmax
N (♢E)q = Prmax
N (♢E).

If q < pcq < pcq < pc : SPR condition holds.

If q > pcq > pcq > pc : SPR condition does not hold.

If q = pcq = pcq = pc :

SPR condition holds iffMMM has no
scheduler maximizing the effect probability
that reaches ccc

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB

pc = PrσN ,c(♢E | ♢c)

for each scheduler σ in N
that reaches c

295 / 359

Checking the SPR condition for singletons

Task: GivenMMM,EEE , ccc , check whether {c}{c}{c} is an SPR cause.

Let NNN be the transformed MDP

where pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E).

Let q = Prmax
N (♢E)q = Prmax
N (♢E)q = Prmax
N (♢E).

If q < pcq < pcq < pc : SPR condition holds.

If q > pcq > pcq > pc : SPR condition does not hold.

If q = pcq = pcq = pc :

SPR condition holds iffMMM has no
scheduler maximizing the effect probability
that reaches ccc

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB

pc = PrσN ,c(♢E | ♢c)

for each scheduler σ in N
that reaches c

296 / 359

Checking the SPR condition for singletons

Task: GivenMMM,EEE , ccc , check whether {c}{c}{c} is an SPR cause.

Let NNN be the transformed MDP

where pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E).

Let q = Prmax
N (♢E)q = Prmax
N (♢E)q = Prmax
N (♢E).

If q < pcq < pcq < pc : SPR condition holds.

If q > pcq > pcq > pc : SPR condition does not hold.

If q = pcq = pcq = pc :

SPR condition holds iffMMM has no
scheduler maximizing the effect probability
that reaches ccc

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB
297 / 359

Checking the SPR condition for singletons

Task: GivenMMM,EEE , ccc , check whether {c}{c}{c} is an SPR cause.

Let NNN be the transformed MDP

where pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E)pc = Prmin
M,c(♢E).

Let q = Prmax
N (♢E)q = Prmax
N (♢E)q = Prmax
N (♢E).

If q < pcq < pcq < pc : SPR condition holds.

If q > pcq > pcq > pc : SPR condition does not hold.

If q = pcq = pcq = pc :

SPR condition holds iffMMM has no
scheduler maximizing the effect probability
that reaches ccc

Ä

ß .{i.%: .
>

1-'

"

.

,

i
&

± - ±

.

" "

298 / 359

Checking the GPR condition

• linear balance equations for the expected frequencies:

xtxtxt ===
∑
α
xt,α

∑
α
xt,α

∑
α
xt,α ===

∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t) for each non-initial state ttt

xs0xs0xs0 ===
∑
α
xs0,α

∑
α
xs0,α

∑
α
xs0,α ===

∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1 for the initial state s0s0s0

• quadratic constraint for the violation of the GPR-condition:

xC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · ps

where xC =
∑
s∈C

xsxC =
∑
s∈C

xsxC =
∑
s∈C

xs (probability for reaching CCC), ps = Prmin
s (♢E)ps = Prmin
s (♢E)ps = Prmin
s (♢E) and

xFN =
∑

s∈FN
xsxFN =

∑
s∈FN

xsxFN =
∑

s∈FN
xs (prob. for false negatives, i.e., effect without cause)

• linear non-negativity and positivity constraints:

xC > 0xC > 0xC > 0 and xs,α ⩾ 0xs,α ⩾ 0xs,α ⩾ 0 for all state-action pairs

Pr(♢E |♢C)Pr(♢E |♢C)Pr(♢E |♢C) ===

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

and Pr(♢E | ¬♢C)Pr(♢E | ¬♢C)Pr(♢E | ¬♢C) ===
xFN
1−xC
xFN
1−xC
xFN
1−xC

299 / 359

Checking the GPR condition

After the model transformation:

CCC violates the GPR condition iff

{
there is an MR-scheduler
refuting the GPR condition

• linear balance equations for the expected frequencies:

xtxtxt ===
∑
α
xt,α

∑
α
xt,α

∑
α
xt,α ===

∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t) for each non-initial state ttt

xs0xs0xs0 ===
∑
α
xs0,α

∑
α
xs0,α

∑
α
xs0,α ===

∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1 for the initial state s0s0s0

• quadratic constraint for the violation of the GPR-condition:

xC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · ps

where xC =
∑
s∈C

xsxC =
∑
s∈C

xsxC =
∑
s∈C

xs (probability for reaching CCC), ps = Prmin
s (♢E)ps = Prmin
s (♢E)ps = Prmin
s (♢E) and

xFN =
∑

s∈FN
xsxFN =

∑
s∈FN

xsxFN =
∑

s∈FN
xs (prob. for false negatives, i.e., effect without cause)

• linear non-negativity and positivity constraints:

xC > 0xC > 0xC > 0 and xs,α ⩾ 0xs,α ⩾ 0xs,α ⩾ 0 for all state-action pairs

Pr(♢E |♢C)Pr(♢E |♢C)Pr(♢E |♢C) ===

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

and Pr(♢E | ¬♢C)Pr(♢E | ¬♢C)Pr(♢E | ¬♢C) ===
xFN
1−xC
xFN
1−xC
xFN
1−xC

300 / 359

Checking the GPR condition

After the model transformation:

CCC violates the GPR condition iff

{
there is an MR-scheduler
refuting the GPR condition

Main idea:
use a constraint system with variables

xsxsxs for the expected frequencies of states s ∈ Ss ∈ Ss ∈ S , and

xs,αxs,αxs,α for the expected frequencies of state-action pairs (s, α)(s, α)(s, α)

under such an MR-scheduler violating the GPR condition

• linear balance equations for the expected frequencies:

xtxtxt ===
∑
α
xt,α

∑
α
xt,α

∑
α
xt,α ===

∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t) for each non-initial state ttt

xs0xs0xs0 ===
∑
α
xs0,α

∑
α
xs0,α

∑
α
xs0,α ===

∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1 for the initial state s0s0s0

• quadratic constraint for the violation of the GPR-condition:

xC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · ps

where xC =
∑
s∈C

xsxC =
∑
s∈C

xsxC =
∑
s∈C

xs (probability for reaching CCC), ps = Prmin
s (♢E)ps = Prmin
s (♢E)ps = Prmin
s (♢E) and

xFN =
∑

s∈FN
xsxFN =

∑
s∈FN

xsxFN =
∑

s∈FN
xs (prob. for false negatives, i.e., effect without cause)

• linear non-negativity and positivity constraints:

xC > 0xC > 0xC > 0 and xs,α ⩾ 0xs,α ⩾ 0xs,α ⩾ 0 for all state-action pairs

Pr(♢E |♢C)Pr(♢E |♢C)Pr(♢E |♢C) ===

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

and Pr(♢E | ¬♢C)Pr(♢E | ¬♢C)Pr(♢E | ¬♢C) ===
xFN
1−xC
xFN
1−xC
xFN
1−xC

301 / 359

Checking the GPR condition

• linear balance equations for the expected frequencies:

xtxtxt ===
∑
α
xt,α

∑
α
xt,α

∑
α
xt,α ===

∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t) for each non-initial state ttt

xs0xs0xs0 ===
∑
α
xs0,α

∑
α
xs0,α

∑
α
xs0,α ===

∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1 for the initial state s0s0s0

• quadratic constraint for the violation of the GPR-condition:

xC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · ps

where xC =
∑
s∈C

xsxC =
∑
s∈C

xsxC =
∑
s∈C

xs (probability for reaching CCC), ps = Prmin
s (♢E)ps = Prmin
s (♢E)ps = Prmin
s (♢E) and

xFN =
∑

s∈FN
xsxFN =

∑
s∈FN

xsxFN =
∑

s∈FN
xs (prob. for false negatives, i.e., effect without cause)

• linear non-negativity and positivity constraints:

xC > 0xC > 0xC > 0 and xs,α ⩾ 0xs,α ⩾ 0xs,α ⩾ 0 for all state-action pairs
Pr(♢E |♢C)Pr(♢E |♢C)Pr(♢E |♢C) ===

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

and Pr(♢E | ¬♢C)Pr(♢E | ¬♢C)Pr(♢E | ¬♢C) ===
xFN
1−xC
xFN
1−xC
xFN
1−xC

302 / 359

Checking the GPR condition

• linear balance equations for the expected frequencies:

xtxtxt ===
∑
α
xt,α

∑
α
xt,α

∑
α
xt,α ===

∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t) for each non-initial state ttt

xs0xs0xs0 ===
∑
α
xs0,α

∑
α
xs0,α

∑
α
xs0,α ===

∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1 for the initial state s0s0s0

• quadratic constraint for the violation of the GPR-condition:

xC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · ps

where xC =
∑
s∈C

xsxC =
∑
s∈C

xsxC =
∑
s∈C

xs (probability for reaching CCC), ps = Prmin
s (♢E)ps = Prmin
s (♢E)ps = Prmin
s (♢E) and

xFN =
∑

s∈FN
xsxFN =

∑
s∈FN

xsxFN =
∑

s∈FN
xs (prob. for false negatives, i.e., effect without cause)

• linear non-negativity and positivity constraints:

xC > 0xC > 0xC > 0 and xs,α ⩾ 0xs,α ⩾ 0xs,α ⩾ 0 for all state-action pairs
Pr(♢E |♢C)Pr(♢E |♢C)Pr(♢E |♢C) ===

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

and Pr(♢E | ¬♢C)Pr(♢E | ¬♢C)Pr(♢E | ¬♢C) ===
xFN
1−xC
xFN
1−xC
xFN
1−xC

303 / 359

Checking the GPR condition

• linear balance equations for the expected frequencies:

xtxtxt ===
∑
α
xt,α

∑
α
xt,α

∑
α
xt,α ===

∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t) for each non-initial state ttt

xs0xs0xs0 ===
∑
α
xs0,α

∑
α
xs0,α

∑
α
xs0,α ===

∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1 for the initial state s0s0s0

• quadratic constraint for the violation of the GPR-condition:

xC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · ps

where xC =
∑
s∈C

xsxC =
∑
s∈C

xsxC =
∑
s∈C

xs (probability for reaching CCC), ps = Prmin
s (♢E)ps = Prmin
s (♢E)ps = Prmin
s (♢E) and

xFN =
∑

s∈FN
xsxFN =

∑
s∈FN

xsxFN =
∑

s∈FN
xs (prob. for false negatives, i.e., effect without cause)

• linear non-negativity and positivity constraints:

xC > 0xC > 0xC > 0 and xs,α ⩾ 0xs,α ⩾ 0xs,α ⩾ 0 for all state-action pairs

Pr(♢E |♢C)Pr(♢E |♢C)Pr(♢E |♢C) ===

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

and Pr(♢E | ¬♢C)Pr(♢E | ¬♢C)Pr(♢E | ¬♢C) ===
xFN
1−xC
xFN
1−xC
xFN
1−xC

304 / 359

Checking the GPR condition

• linear balance equations for the expected frequencies:

xtxtxt ===
∑
α
xt,α

∑
α
xt,α

∑
α
xt,α ===

∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t) for each non-initial state ttt

xs0xs0xs0 ===
∑
α
xs0,α

∑
α
xs0,α

∑
α
xs0,α ===

∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1 for the initial state s0s0s0

• quadratic constraint for the violation of the GPR-condition:

xC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · ps

where xC =
∑
s∈C

xsxC =
∑
s∈C

xsxC =
∑
s∈C

xs (probability for reaching CCC), ps = Prmin
s (♢E)ps = Prmin
s (♢E)ps = Prmin
s (♢E) and

xFN =
∑

s∈FN
xsxFN =

∑
s∈FN

xsxFN =
∑

s∈FN
xs (prob. for false negatives, i.e., effect without cause)

• linear non-negativity and positivity constraints:

xC > 0xC > 0xC > 0 and xs,α ⩾ 0xs,α ⩾ 0xs,α ⩾ 0 for all state-action pairs

Pr(♢E |♢C)Pr(♢E |♢C)Pr(♢E |♢C) ===

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

and Pr(♢E | ¬♢C)Pr(♢E | ¬♢C)Pr(♢E | ¬♢C) ===
xFN
1−xC
xFN
1−xC
xFN
1−xC

305 / 359

Checking the GPR condition

• linear balance equations for the expected frequencies:

xtxtxt ===
∑
α
xt,α

∑
α
xt,α

∑
α
xt,α ===

∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t)
∑
s,α

xs,α · P(s, α, t) for each non-initial state ttt

xs0xs0xs0 ===
∑
α
xs0,α

∑
α
xs0,α

∑
α
xs0,α ===

∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1
∑
s,α

xs,α · P(s, α, s0) + 1 for the initial state s0s0s0

• quadratic constraint for the violation of the GPR-condition:

xC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · psxC · xFN ⩾
(
1−xC

)
·
∑
s∈C

xs · ps

where xC =
∑
s∈C

xsxC =
∑
s∈C

xsxC =
∑
s∈C

xs (probability for reaching CCC), ps = Prmin
s (♢E)ps = Prmin
s (♢E)ps = Prmin
s (♢E) and

xFN =
∑

s∈FN
xsxFN =

∑
s∈FN

xsxFN =
∑

s∈FN
xs (prob. for false negatives, i.e., effect without cause)

• linear non-negativity and positivity constraints:

xC > 0xC > 0xC > 0 and xs,α ⩾ 0xs,α ⩾ 0xs,α ⩾ 0 for all state-action pairs

Pr(♢E |♢C)Pr(♢E |♢C)Pr(♢E |♢C) ===

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

∑
s∈C

xs ·ps
xC

and Pr(♢E | ¬♢C)Pr(♢E | ¬♢C)Pr(♢E | ¬♢C) ===
xFN
1−xC
xFN
1−xC
xFN
1−xC

306 / 359

Algorithmic problems

Checking cause-effect relationships: GivenMMM,EEE ,CCC , check whether

• C is an SPR cause for E

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• CCC is a GPR cause for EEE

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: GivenM,E , determine a PR
cause C that is optimal w.r.t. to some coverage criterion.

307 / 359

Algorithmic problems

Checking cause-effect relationships: GivenM,E ,C , check whether

• C is an SPR cause for E

MC: poly-time using standard methods for (conditional) probabilities

MDP: poly-time by statewise checking of the SPR condition

• C is a GPR cause for E

MC: poly-time using standard methods for (conditional) probabilities

MDP: in PSPACE, using an encoding of the violation of the GPR
condition in ETR (quadratic + linear constraints)

Finding good causes for given effects: GivenMMM,EEE , determine a PR
cause CCC that is optimal w.r.t. to some coverage criterion.

308 / 359

Quality measures for causes

• for fixed effect set EEE and GPR cause CCC

• take inspiration of quality measures used in statistical analysis
for a good coverge of effect scenarios

• algorithmic problems:

⋆ compute quality measure for fixed effect and GPR cause

⋆ find optimal GPR cause for fixed effect set

309 / 359

Quality measures for causes

• for fixed effect set EEE and GPR cause CCC

• take inspiration of quality measures used in statistical analysis
for a good coverge of effect scenarios

• algorithmic problems:

⋆ compute quality measure for fixed effect and GPR cause

⋆ find optimal GPR cause for fixed effect set

310 / 359

Quality measures for causes

• for fixed effect set EEE and GPR cause CCC

• take inspiration of quality measures used in statistical analysis
for a good coverge of effect scenarios

• algorithmic problems:

⋆ compute quality measure for fixed effect and GPR cause

⋆ find optimal GPR cause for fixed effect set

311 / 359

Quality measures for causes
precision (accuracy for “(true or false) positives”)

prec(C)prec(C)prec(C) === inf
σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C) TP

TP + FPx
ranges over all schedulers

with PrσM(♢C) > 0

recall (sensitivity):

recall(C)recall(C)recall(C) === inf
σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E) TP

TP + FN

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

TP
FN

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

312 / 359

Quality measures for causes
precision (accuracy for “(true or false) positives”)

prec(C)prec(C)prec(C) === inf
σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C) TP

TP + FP

recall (sensitivity):

recall(C)recall(C)recall(C) === inf
σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E) TP

TP + FNx
ranges over all schedulers

with PrσM(♢E) > 0

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

TP
FN

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

313 / 359

Quality measures for causes
precision (accuracy for “(true or false) positives”)

prec(C)prec(C)prec(C) === inf
σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C) TP

TP + FP

recall (sensitivity):

recall(C)recall(C)recall(C) === inf
σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E) TP

TP + FN

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

TP
FNx

ranges over all schedulers
with PrσM((¬C) UE) > 0

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

314 / 359

Quality measures for causes
precision (accuracy for “(true or false) positives”)

prec(C)prec(C)prec(C) === inf
σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C) TP

TP + FP

recall (sensitivity):

recall(C)recall(C)recall(C) === inf
σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E) TP

TP + FN

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

TP
FN

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

315 / 359

Quality measures for causes
precision (accuracy for “(true or false) positives”)

prec(C)prec(C)prec(C) === inf
σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)

recall (sensitivity):

recall(C)recall(C)recall(C) === inf
σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E) TP

TP + FN

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

TP
FN

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

already taken into account
in the GPR condition;
precision says nothing

about coverage

computing precision & recall:

via standard techniques for
condition prob. in MDPs

computing covrat & f-score:

via reduction to SSPP
(stoch. shortest path problem)

316 / 359

Quality measures for causes
precision (accuracy for “(true or false) positives”)

prec(C)prec(C)prec(C) === inf
σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)

recall (sensitivity):

recall(C)recall(C)recall(C) === inf
σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)

TP
TP + FN

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

TP
FN

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

computing precision & recall:

via standard techniques for
condition prob. in MDPs

computing covrat & f-score:

via reduction to SSPP
(stoch. shortest path problem)

317 / 359

Quality measures for causes
precision (accuracy for “(true or false) positives”)

prec(C)prec(C)prec(C) === inf
σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)inf

σ
PrσM(♢E | ♢C)

recall (sensitivity):

recall(C)recall(C)recall(C) === inf
σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)inf

σ
PrσM(♢C | ♢E)

TP
TP + FN

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

TP
FN

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

computing precision & recall:

via standard techniques for
condition prob. in MDPs

computing covrat & f-score:

via reduction to SSPP
(stoch. shortest path problem)

318 / 359

Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

=== inf
σ
inf
σ
inf
σ

TPσσσ

FNσσσ

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ
inf
σ
inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

2
X+2
2

X+2
2

X+2 where XXX === sup
σ
sup
σ
sup
σ

FPσσσ + FNσσσ

TPσσσ

After model transformation for fixed effect and GPR cause:

• TP, FP, FN, TN are terminal states

• recall and f-score can be derived from inf resp. sup of PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

quotient of probabilities for reaching disjoint sets of terminal states

319 / 359

Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

=== inf
σ
inf
σ
inf
σ

TPσσσ

FNσσσ

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) === inf
σ
inf
σ
inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

2
X+2
2

X+2
2

X+2 where XXX === sup
σ
sup
σ
sup
σ

FPσσσ + FNσσσ

TPσσσ

TP true positive (covered effects)
FN false negative (uncovered effects)

TN true negative (noeffect without C)
FP false positive (noffect after C)

After model transformation for fixed effect and GPR cause:

• TP, FP, FN, TN are terminal states

• recall and f-score can be derived from inf resp. sup of PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

quotient of probabilities for reaching disjoint sets of terminal states

320 / 359

Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

=== inf
σ
inf
σ
inf
σ

TPσσσ

FNσσσ

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) ===

inf
σ
inf
σ
inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

2
X+2
2

X+2
2

X+2 where XXX === sup
σ
sup
σ
sup
σ

FPσσσ + FNσσσ

TPσσσ

TP true positive (covered effects)
FN false negative (uncovered effects)

TN true negative (noeffect without C)
FP false positive (noffect after C)

After model transformation for fixed effect and GPR cause:

• TP, FP, FN, TN are terminal states

• recall and f-score can be derived from inf resp. sup of PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

quotient of probabilities for reaching disjoint sets of terminal states

321 / 359

Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

=== inf
σ
inf
σ
inf
σ

TPσσσ

FNσσσ

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) ===

inf
σ
inf
σ
inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

2
X+2
2

X+2
2

X+2 where XXX === sup
σ
sup
σ
sup
σ

FPσσσ + FNσσσ

TPσσσ

After model transformation for fixed effect and GPR cause:

• TP, FP, FN, TN are terminal states

• recall and f-score can be derived from inf resp. sup of PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

quotient of probabilities for reaching disjoint sets of terminal states

322 / 359

Coverage ratio and f-score

coverage ratio (fraction of covered and uncovered effects)

covrat(C)covrat(C)covrat(C) === inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

inf
σ

PrσM(♢C ∧ ♢E)
PrσM((¬C) UE)

=== inf
σ
inf
σ
inf
σ

TPσσσ

FNσσσ

f-score (harmonic mean of precision and recall)

fscore(C)fscore(C)fscore(C) ===

inf
σ
inf
σ
inf
σ

precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)
precσ(C) · recallσ(C)
precσ(C) + recallσ(C)

2
X+2
2

X+2
2

X+2 where XXX === sup
σ
sup
σ
sup
σ

FPσσσ + FNσσσ

TPσσσ

After model transformation for fixed effect and GPR cause:

• TP, FP, FN, TN are terminal states

• recall and f-score can be derived from inf resp. sup of PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

quotient of probabilities for reaching disjoint sets of terminal states
323 / 359

After model transformation ...

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB

coverage ratio
fraction of covered and uncovered effects

covrat(C)covrat(C)covrat(C) === inf
σ
inf
σ
inf
σ

f-score
harmonic mean of precision & recall

fscore(C)fscore(C)fscore(C) === 2
X+2
2

X+2
2

X+2

where XXX === sup
σ
sup
σ
sup
σ

FPFPFPσσσ +FNFNFNσσσ

TPTPTPσσσ

324 / 359

After model transformation ...

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB

coverage ratio
fraction of covered and uncovered effects

covrat(C)covrat(C)covrat(C) === inf
σ
inf
σ
inf
σ

TPσσσ

FNσσσ

f-score
harmonic mean of precision & recall

fscore(C)fscore(C)fscore(C) === 2
X+2
2

X+2
2

X+2

where XXX === sup
σ
sup
σ
sup
σ

FPFPFPσσσ +FNFNFNσσσ

TPTPTPσσσ

325 / 359

After model transformation ...

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB

coverage ratio
fraction of covered and uncovered effects

covrat(C)covrat(C)covrat(C) === inf
σ
inf
σ
inf
σ

TPTPTPσσσ

FNFNFNσσσ

f-score
harmonic mean of precision & recall

fscore(C)fscore(C)fscore(C) === 2
X+2
2

X+2
2

X+2

where XXX === sup
σ
sup
σ
sup
σ

FPFPFPσσσ +FNFNFNσσσ

TPTPTPσσσ

326 / 359

After model transformation ...

Ä

Ung noeff

effect FTTH
an
: ¥

.

FN

1-%
⑤ effect

Co V

FP FB

coverage ratio
fraction of covered and uncovered effects

covrat(C)covrat(C)covrat(C) === inf
σ
inf
σ
inf
σ

TPσσσ

FNσσσ

f-score
harmonic mean of precision & recall

fscore(C)fscore(C)fscore(C) === 2
X+2
2

X+2
2

X+2

where XXX === sup
σ
sup
σ
sup
σ

FPFPFPσσσ +FNFNFNσσσ

TPTPTPσσσ

327 / 359

Covratio and f-score via SSPP

%) .

U

↑

!

Given MDPMMM
- without end components
- UUU ,VVV disjoint sets of terminal states

Goal: compute inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

(for sup analogous)

Let NNN be the transformed weighted MDP
weight 1 for UUU, weight 0 for all other states

inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V) === inf

σ
inf
σ
inf
σ

EσN (EσN (EσN (“accumulated weight until reaching VVV ”)))

stochastic shortest path in NNN

328 / 359

Covratio and f-score via SSPP

!

Given MDPMMM
- without end components
- UUU ,VVV disjoint sets of terminal states

Goal: compute inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

(for sup analogous)

Let NNN be the transformed weighted MDP
weight 1 for UUU, weight 0 for all other states

inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V) === inf

σ
inf
σ
inf
σ

EσN (EσN (EσN (“accumulated weight until reaching VVV ”)))

stochastic shortest path in NNN

329 / 359

Covratio and f-score via SSPP

÷:
:

Given MDPMMM
- without end components
- UUU ,VVV disjoint sets of terminal states

Goal: compute inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

Let NNN be the transformed weighted MDP
weight 1 for UUU, weight 0 for all other states

inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V) === inf

σ
inf
σ
inf
σ

EσN (EσN (EσN (“accumulated weight until reaching VVV ”)))

stochastic shortest path in NNN

330 / 359

Covratio and f-score via SSPP

÷:
:

Given MDPMMM
- without end components
- UUU ,VVV disjoint sets of terminal states

Goal: compute inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

Let NNN be the transformed weighted MDP
weight 1 for UUU, weight 0 for all other states

stochastic process
initially: w = 0w = 0w = 0

expected outcome:
Pr(♢U)
Pr(♢V)
Pr(♢U)
Pr(♢V)
Pr(♢U)
Pr(♢V)

1. generate sample run until reaching a terminal state sss

2. If s ∈ Vs ∈ Vs ∈ V then return www and halt.
If s ∈ Us ∈ Us ∈ U then w := w+1w := w+1w := w+1 and go to 1.
If s ∈ Ts ∈ Ts ∈ T (other terminal state) then go to 1.

inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V) === inf

σ
inf
σ
inf
σ

EσN (EσN (EσN (“accumulated weight until reaching VVV ”)))

stochastic shortest path in NNN

331 / 359

Covratio and f-score via SSPP

÷:
:

Given MDPMMM
- without end components
- UUU ,VVV disjoint sets of terminal states

Goal: compute inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

Let NNN be the transformed weighted MDP
weight 1 for UUU, weight 0 for all other states

stochastic process
initially: w = 0w = 0w = 0

expected outcome:
Pr(♢U)
Pr(♢V)
Pr(♢U)
Pr(♢V)
Pr(♢U)
Pr(♢V)

1. generate sample run until reaching a terminal state sss

2. If s ∈ Vs ∈ Vs ∈ V then return www and halt.
If s ∈ Us ∈ Us ∈ U then w := w+1w := w+1w := w+1 and go to 1.
If s ∈ Ts ∈ Ts ∈ T (other terminal state) then go to 1.

inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V) === inf

σ
inf
σ
inf
σ

EσN (EσN (EσN (“accumulated weight until reaching VVV ”)))

stochastic shortest path in NNN

332 / 359

Covratio and f-score via SSPP

÷:
:

Given MDPMMM
- without end components
- UUU ,VVV disjoint sets of terminal states

Goal: compute inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)

Let NNN be the transformed weighted MDP
weight 1 for UUU, weight 0 for all other states

inf
σ
inf
σ
inf
σ

PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V)
PrσM(♢U)
PrσM(♢V) === inf

σ
inf
σ
inf
σ

EσN (EσN (EσN (“accumulated weight until reaching VVV ”)))

stochastic shortest path in NNN

333 / 359

Quality measures for causes

• Three measures for the “degree of coverage”:

recall, coverage ratio, and f-score

• computable in poly-time for fixed effect EEE and GPR cause CCC :

⋆ recall: via standard techniques for conditional probabilities in MDPs

⋆ coverage ratio and f-score: via polynomial reduction to SSPP

• optimalization problem:
given effect set EEE , find an SPR or a GPR cause CCC with

⋆ maximal recall

⋆ maximal coverage ratio

⋆ maximal f-score

334 / 359

Quality measures for causes

• Three measures for the “degree of coverage”:

recall, coverage ratio, and f-score

• computable in poly-time for fixed effect EEE and GPR cause CCC :

⋆ recall: via standard techniques for conditional probabilities in MDPs

⋆ coverage ratio and f-score: via polynomial reduction to SSPP

• optimalization problem:
given effect set EEE , find an SPR or a GPR cause CCC with

⋆ maximal recall

⋆ maximal coverage ratio

⋆ maximal f-score
335 / 359

Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):

⋆ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

⋆ recall-optimal = covratio-optimal: computable in poly-time

⋆ f-score optimal causes:

MC: in poly-time via reduction to SSPP in MDPs

MDP: in exp-time via reduction to SSP-games

“canonical SPR cause”: CCC = union of all singleton SPR causes

• recall-optimal: obvious as any SPR is a subset of CCC
• covratio-opt = recall-opt: TP

FN < TP’
FN’ iff TP

FN+TP < TP’
FN’+TP’

336 / 359

Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):

⋆ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

⋆ recall-optimal = covratio-optimal: computable in poly-time

⋆ f-score optimal causes:

MC: in poly-time via reduction to SSPP in MDPs

MDP: in exp-time via reduction to SSP-games

“canonical SPR cause”: CCC = union of all singleton SPR causes

• recall-optimal: obvious as any SPR is a subset of CCC
• covratio-opt = recall-opt: TP

FN < TP’
FN’ iff TP

FN+TP < TP’
FN’+TP’

337 / 359

Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):

⋆ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

⋆ recall-optimal = covratio-optimal: computable in poly-time

⋆ f-score optimal causes:

MC: in poly-time via reduction to SSPP in MDPs

MDP: in exp-time via reduction to SSP-games

“canonical SPR cause”: CCC = union of all singleton SPR causes

• recall-optimal: obvious as any SPR is a subset of CCC
• covratio-opt = recall-opt: TP

FN < TP’
FN’ iff TP

FN+TP < TP’
FN’+TP’

338 / 359

Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):

⋆ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

⋆ recall-optimal = covratio-optimal: computable in poly-time

⋆ f-score optimal causes:

MC: in poly-time via reduction to SSPP in MDPs

MDP: in exp-time via reduction to SSP-games

“canonical SPR cause”: CCC = union of all singleton SPR causes

• recall-optimal: obvious as any SPR is a subset of CCC
• covratio-opt = recall-opt: TP

FN < TP’
FN’ iff TP

FN+TP < TP’
FN’+TP’

339 / 359

Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):

⋆ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

⋆ recall-optimal = covratio-optimal: computable in poly-time

⋆ f-score optimal causes:

MC: in poly-time via reduction to SSPP in MDPs

MDP: in exp-time via reduction to SSP-games

“canonical SPR cause”: CCC = union of all singleton SPR causes

• recall-optimal: obvious as any SPR is a subset of CCC

• covratio-opt = recall-opt: TP
FN < TP’

FN’ iff TP
FN+TP < TP’

FN’+TP’

340 / 359

Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):

⋆ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

⋆ recall-optimal = covratio-optimal: computable in poly-time

⋆ f-score optimal causes:

MC: in poly-time via reduction to SSPP in MDPs

MDP: in exp-time via reduction to SSP-games

“canonical SPR cause”: CCC = union of all singleton SPR causes

• recall-optimal: obvious as any SPR is a subset of CCC
• covratio-opt = recall-opt: TP

FN < TP’
FN’ iff TP

FN+TP < TP’
FN’+TP’

341 / 359

Finding optimal causes

Optimal GPR causes (recall, coverage ratio and f-score):

⋆ in polynomial space

by considering all cause candidates, checking the GPR condition (poly-space)
and computing their recall, coverage ratio or f-score (poly-time)

Optimal SPR causes:

⋆ recall-optimal = covratio-optimal: computable in poly-time

⋆ f-score optimal causes:

MC: in poly-time via reduction to SSPP in MDPs

MDP: in exp-time via reduction to SSP-games

“canonical SPR cause”: CCC = union of all singleton SPR causes

• recall-optimal: obvious as any SPR is a subset of CCC
• covratio-opt = recall-opt: TP

FN < TP’
FN’ iff TP

FN+TP < TP’
FN’+TP’

342 / 359

F-score optimal SPR cause in MC

:* .0 µ ∅

MCMMM

C = {c , d , ...}C = {c , d , ...}C = {c , d , ...}
set of states ccc with

pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)

nondeterministic choice in CCC-states
action ααα: “ccc selected for SPR cause”

move with prob. pcpcpc to new effect state effeffeff
with prob. 1−pc1−pc1−pc to a terminal non-effect state

action βββ: “ccc not selected for SPR cause”

reset transitions from TP, FN, FP

weight 1 for FN and FP
weight 0 for all other states

343 / 359

F-score optimal SPR cause in MC

MCMMM C = {c , d , ...}C = {c , d , ...}C = {c , d , ...}
set of states ccc with

pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)

nondeterministic choice in CCC-states
action ααα: “ccc selected for SPR cause”

move with prob. pcpcpc to new effect state effeffeff
with prob. 1−pc1−pc1−pc to a terminal non-effect state

action βββ: “ccc not selected for SPR cause”

reset transitions from TP, FN, FP

weight 1 for FN and FP
weight 0 for all other states

344 / 359

F-score optimal SPR cause in MC

%:
a

'

s
r
noch

elf

MDP NNN C = {c , d , ...}C = {c , d , ...}C = {c , d , ...}
set of states ccc with

pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)

nondeterministic choice in CCC-states
action ααα: “ccc selected for SPR cause”

move with prob. pcpcpc to new effect state effeffeff
with prob. 1−pc1−pc1−pc to a terminal non-effect state

action βββ: “ccc not selected for SPR cause”

reset transitions from TP, FN, FP

weight 1 for FN and FP
weight 0 for all other states

345 / 359

F-score optimal SPR cause in MC

%:
✗ s

~
Noch

elf
action ß

MDP NNN C = {c , d , ...}C = {c , d , ...}C = {c , d , ...}
set of states ccc with

pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)

nondeterministic choice in CCC-states
action ααα: “ccc selected for SPR cause”

move with prob. pcpcpc to new effect state effeffeff
with prob. 1−pc1−pc1−pc to a terminal non-effect state

action βββ: “ccc not selected for SPR cause”

reset transitions from TP, FN, FP

weight 1 for FN and FP
weight 0 for all other states

346 / 359

F-score optimal SPR cause in MC

%
←

¥;
noch

↓ er
~

FP
Tui

•

eff
action ß Ttp

MDP NNN C = {c , d , ...}C = {c , d , ...}C = {c , d , ...}
set of states ccc with

pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)

nondeterministic choice in CCC-states
action ααα: “ccc selected for SPR cause”

move with prob. pcpcpc to new effect state effeffeff
with prob. 1−pc1−pc1−pc to a terminal non-effect state

action βββ: “ccc not selected for SPR cause”

reset transitions from TP, FN, FP

weight 1 for FN and FP
weight 0 for all other states

fscore(C)fscore(C)fscore(C) === 2
XC+2

2
XC+2

2
XC+2 where XCXCXC === FNC+FPC

TPC

FNC+FPC
TPC

FNC+FPC
TPC

347 / 359

F-score optimal SPR cause in MC

✗

E- N
'

' S

i noch
↓ er

~

FP
Tini

eff
action ß Ttp

MDP NNN C = {c , d , ...}C = {c , d , ...}C = {c , d , ...}
set of states ccc with

pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)

nondeterministic choice in CCC-states
action ααα: “ccc selected for SPR cause”

move with prob. pcpcpc to new effect state effeffeff
with prob. 1−pc1−pc1−pc to a terminal non-effect state

action βββ: “ccc not selected for SPR cause”

reset transitions from TP, FN, FP

weight 1 for FN and FP
weight 0 for all other states

fscore(C)fscore(C)fscore(C) === 2
XC+2

2
XC+2

2
XC+2 where XCXCXC === FNC+FPC

TPC

FNC+FPC
TPC

FNC+FPC
TPC

348 / 359

F-score optimal SPR cause in MC

✗

E- N
'

' S

i noch
↓ er

~

FP
Tini

eff
action ß Ttp

MDP NNN C = {c , d , ...}C = {c , d , ...}C = {c , d , ...}
set of states ccc with

pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)

nondeterministic choice in CCC-states
action ααα: “ccc selected for SPR cause”

move with prob. pcpcpc to new effect state effeffeff
with prob. 1−pc1−pc1−pc to a terminal non-effect state

action βββ: “ccc not selected for SPR cause”

reset transitions from TP, FN, FP
weight 1 for FN and FP
weight 0 for all other states

fscore(C)fscore(C)fscore(C) === 2
XC+2

2
XC+2

2
XC+2 where XCXCXC === FNC+FPC

TPC

FNC+FPC
TPC

FNC+FPC
TPC

349 / 359

F-score optimal SPR cause in MC

✗

E- N
'

' S

i noch
↓ er

~

FP
Tini

eff
action ß Ttp

MDP NNN C = {c , d , ...}C = {c , d , ...}C = {c , d , ...}
set of states ccc with

pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)pc = Prc(♢E) > PrM(♢E)

nondeterministic choice in CCC-states
action ααα: “ccc selected for SPR cause”

move with prob. pcpcpc to new effect state effeffeff
with prob. 1−pc1−pc1−pc to a terminal non-effect state

action βββ: “ccc not selected for SPR cause”

reset transitions from TP, FN, FP
weight 1 for FN and FP
weight 0 for all other states

max
C

max
C

max
C

fscore(C)fscore(C)fscore(C) === 2
X+2
2

X+2
2

X+2 where XXX === Emin
N (Emin
N (Emin
N (weight)))

350 / 359

Summary: algorithmic problems for PR causes

Results on strict and global probability-raising causality in Markov
chains and MDPs (with fixed effect set EEE):

351 / 359

Summary: algorithmic problems for PR causes

Results on strict and global probability-raising causality in Markov
chains and MDPs (with fixed effect set EEE):

For fixed set CCC :

checking
PR condition

computing quality measures
(recall, coverage ratio, f-score)

SPR ∈ P poly-time

GPR
MDP: ∈ PSPACE
MC: ∈ P

poly-time

352 / 359

Summary: algorithmic problems for PR causes

Results on strict and global probability-raising causality in Markov
chains and MDPs (with fixed effect set EEE):

Finding optimal causes and related threshold problems:

covratio-optimal
= recall-optimal

f-score-optimal
threshold
problem

SPR poly-time
MDP: poly-space
MC: poly-time

f-score threshold problem
MDP: ∈ NP ∩ coNP
MC: ∈ P

GPR poly-space
MDP: ∈ PSPACE
MC: NP-complete

353 / 359

Conclusions

part 1: notions of causality and responsibility in TS
• forward causality

⋆ necessary and sufficient causes (formalization in CTL*)

⋆ counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)

• backward causality
⋆ game-based definition of strategic and causal responsibility

• measures for the importance of states on temporal properties

⋆ degree of responsibility for the satisfaction of properties:
mutation- or game-based definition via size of smallest switching pairs

⋆ Shapley values to measure the importance of states on the truth of path formulas

• Aumann-Shapley values for models with continuous parameters
e.g., to measure the impact of probability parameters in parametric Markov chains
on reachability probabilities or expected costs [B., Funke, Majumdar, AAAI’21]

354 / 359

Conclusions

part 1: notions of causality and responsibility in TS
• forward causality

⋆ necessary and sufficient causes (formalization in CTL*)

⋆ counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)

• backward causality
⋆ game-based definition of strategic and causal responsibility

• measures for the importance of states on temporal properties

⋆ degree of responsibility for the satisfaction of properties:
mutation- or game-based definition via size of smallest switching pairs

⋆ Shapley values to measure the importance of states on the truth of path formulas

• Aumann-Shapley values for models with continuous parameters
e.g., to measure the impact of probability parameters in parametric Markov chains
on reachability probabilities or expected costs [B., Funke, Majumdar, AAAI’21]

355 / 359

Conclusions

part 1: notions of causality and responsibility in TS
• forward causality

⋆ necessary and sufficient causes (formalization in CTL*)

⋆ counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)

• backward causality
⋆ game-based definition of strategic and causal responsibility

• measures for the importance of states on temporal properties

⋆ degree of responsibility for the satisfaction of properties:
mutation- or game-based definition via size of smallest switching pairs

⋆ Shapley values to measure the importance of states on the truth of path formulas

− quantitative version of forward responsibility

− analogous for strategic backward responsibility, but unclear for causal backward resp.

− more difficult for branching-time logics [Mascle et al, LICS’21]

• Aumann-Shapley values for models with continuous parameters
e.g., to measure the impact of probability parameters in parametric Markov chains
on reachability probabilities or expected costs [B., Funke, Majumdar, AAAI’21]

356 / 359

Conclusions

part 1: notions of causality and responsibility in TS
• forward causality

⋆ necessary and sufficient causes (formalization in CTL*)

⋆ counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)

• backward causality
⋆ game-based definition of strategic and causal responsibility

• measures for the importance of states on temporal properties

⋆ degree of responsibility for the satisfaction of properties:
mutation- or game-based definition via size of smallest switching pairs

⋆ Shapley values to measure the importance of states on the truth of path formulas

• Aumann-Shapley values for models with continuous parameters
e.g., to measure the impact of probability parameters in parametric Markov chains
on reachability probabilities or expected costs [B., Funke, Majumdar, AAAI’21]

357 / 359

Conclusions

part 1: notions of causality and responsibility in TS
• forward causality

⋆ necessary and sufficient causes (formalization in CTL*)

⋆ counterfactual: mutation- or game-based definition
open: is there a logical characterization? (using some hyperlogic?)

• backward causality
⋆ game-based definition of strategic and causal responsibility

• measures for the importance of states on temporal properties
...
...
...

part 2: probabilistic causality in Markovian models

• MDP-formalization of the PR condition Pr(effect|cause)Pr(effect|cause)Pr(effect|cause) >>> Pr(effect|¬cause)Pr(effect|¬cause)Pr(effect|¬cause)

• many open questions: path events for causes and effects, other quality
measures, backward causality, actionability, ...

358 / 359

Thank You

359 / 359

