Computation Theory over Sets with Atoms

Bartek Klin
University of Oxford

Puzzle I:a graph

- nodes: ordered pairs of distinct natural numbers

$$\left\{ \left(nm\right) \mid n\neq m\in\mathbb{N}\right\}$$

- edges (undirected):

Is it 3-colorable?

Puzzle II: linear equations

- variables: ordered pairs of distinct natural numbers

$$\left\{ \left(nm\right) \mid n\neq m\in\mathbb{N}\right\}$$

- equations:

$$(nm) + (mk) + (kn) = 0$$
 $(12) + (21) = 1$

Does it have a solution in \mathbb{Z}_2 ?

General theme

Replace finite structures with infinite, but highly symmetric ones in:

- automata theory
- computability theory
- modelling / verification
- algorithms

• • •

- all the way down to set theory

- I. Register automata
- 2. Sets with atoms
- 3. μ -calculus with atoms
- -- Turing machines with atoms
- -- Constraint satisfaction problems with atoms
- -- Programming with atoms

Register automata

Finite automata

A finite automaton is:

finite

- a set Q of states
- an alphabet Σ
- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- transition function $\delta:Q\times\Sigma\to Q$ (or relation $\delta\subseteq Q\times\Sigma\times Q$)

Example language:

$$\bigcup_{a \in \Sigma} a(\Sigma \setminus a)^*$$

What about infinite alphabets?

Idea I: keep the definition as it is

- a set Q of states finite
- an alphabet Σ -
- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- transition function $\delta:Q\times\Sigma\to Q$ (or relation $\delta\subseteq Q\times\Sigma\times Q$)

Problem: does not recognize

$$\bigcup_{a \in \Sigma} a(\Sigma \setminus a)^*$$

What about infinite alphabets?

Idea II: allow infinitely many states

- a set Q of states \triangleleft
- an alphabet Σ -

infinite

- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- transition function $\delta:Q\times\Sigma\to Q$ (or relation $\delta\subseteq Q\times\Sigma\times Q$)

Problem: every language is recognized

Register automata

A register automaton is:

finite

- a set Q of states
- a set R of registers
- an alphabet \mathbb{A} (or $\Sigma \times \mathbb{A}$)

- infinite
- initial state $\,q_0\in Q$, accepting states $\,F\subseteq Q$
- configurations: $\Gamma = Q \times (\mathbb{A} \cup \{\bot\})^R$
- transition function $\delta:\Gamma\times\mathbb{A}\to\Gamma$ (or relation $\delta\subseteq\Gamma\times\mathbb{A}\times\Gamma$)

that only checks A for equality.

"Only checking for equality", syntactically

Every transition:

$$q \xrightarrow{a} q'$$

is guarded by a Boolean combination of conditions:

$$a = r_i$$
 $a = r'_j$ $r_i = r_j$ $r_i = r'_j$

(so a is a "letter variable", not an actual letter)

 r_i - old i-th register

 r_i' - new i-th register

Example

$$\bigcup_{a \in \mathbb{A}} a(\mathbb{A} \setminus a)^*$$

This is a deterministic register automaton.

"Only checking for equality", semantically

Every bijection $\pi:\mathbb{A}\to\mathbb{A}$ acts on configurations:

$$(q, a_1, \ldots, a_k) \cdot \pi = (q, \pi(a_1), \ldots, \pi(a_k))$$

This defines a group action of $\operatorname{Aut}(\mathbb{A})$ on Γ .

A group action of $\,G\,$ on a set $\,X\,$:

$$\cdot \cdot : X \times G \to X$$

such that

$$x \cdot 1 = x$$

$$x \cdot (fg) = (x \cdot f) \cdot g$$

"Only checking for equality", semantically

Every bijection $\pi:\mathbb{A}\to\mathbb{A}$ acts on configurations:

$$(q, a_1, \dots, a_k) \cdot \pi = (q, \pi(a_1), \dots, \pi(a_k))$$

This defines a group action of $\operatorname{Aut}(\mathbb{A})$ on Γ .

We require δ to be equivariant:

if
$$(\gamma, a, \gamma') \in \delta$$
 then $(\gamma \cdot \pi, \pi(a), \gamma' \cdot \pi) \in \delta$ for all π .

Fact: The syntactic and the semantic conditions are equivalent.

It is tempting to write:

A register automaton is:

- a set Γ of configurations line
- a group action of $\operatorname{Aut}(\mathbb{A})$ on Γ

infinite

- an alphabet \mathbb{A} (or $\Sigma \times \mathbb{A}$)
- initial and accepting configurations
- transition function $\delta:\Gamma\times\mathbb{A}\to\Gamma$ (or relation $\delta\subseteq\Gamma\times\mathbb{A}\times\Gamma$) that is equivariant.

This is too powerful

(we'll fix it later)

Questions

Q1: What about other computation models, logics, calculi etc?

Q2: What if we want to check for more than equality?

II Sets with Atoms

Slogans

X = set, function, relation, automaton,Turing machine, grammar, graph,system of equations...

X with atoms

Infinite but with lots of symmetries

orbit-finite

Infinite but symbolically finitely presentable

We can compute on them

Von Neumann hierarchy

A hierarchy of universes:

$$\mathcal{U}_0 = \emptyset$$

$$\mathcal{U}_{\alpha+1} = \mathcal{P}\mathcal{U}_{\alpha}$$

$$\mathcal{U}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{U}_{\alpha}$$

defined for every ordinal number.

Elements of sets are other sets, in a well founded way

Every set sits somewhere in this hierarchy.

A - a countable set of atoms

A hierarchy of universes:

$$\mathcal{U}_0 = \emptyset$$

$$\mathcal{U}_{\alpha+1} = \mathcal{P}\mathcal{U}_{\alpha} + \mathbb{A}$$

$$\mathcal{U}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{U}_{\alpha}$$

Elements of sets with atoms are atoms or other sets with atoms, in a well founded way

A canonical group action:

$$_{-}\cdot _{-}:\mathcal{U}\times \mathrm{Aut}(\mathbb{A})\to \mathcal{U}$$

Finite support

$$S\subseteq \mathbb{A} \ \operatorname{supports} X \ \operatorname{if}$$

$$\forall a \in S.\pi(a) = a \quad \text{implies} \quad x \cdot \pi = x$$

A legal set with atoms:

- has a finite support,
- every element has a finite support,
- and so on.

A set is equivariant if it has empty support.

Examples

$$a\in\mathbb{A}$$
 is supported by $\{a\}$
 \mathbb{A} is equivariant $S\subseteq\mathbb{A}$ is supported by S
 $\mathbb{A}\setminus S$ is supported by S

Fact: $S \subseteq \mathbb{A}$ is fin. supp. iff it is finite or co-finite

$$\mathbb{A}^{(2)}=\{(d,e)\mid d,e\in\mathbb{A},d\neq e\}\quad\text{is equivariant}$$

$$\binom{\mathbb{A}}{2}=\{\{d,e\}\mid d,e\in\mathbb{A},d\neq e\}\quad\text{is equivariant}$$

Legal sets with atoms are closed under:

- unions, intersections, set differences
- Cartesian products
- taking finitely supported subsets
- quotienting by finitely supported equivalence relations

BUT not under powersets!

 $\mathcal{P}(\mathbb{A})$ is equivariant but not legal.

They are closed under finite powersets $\mathcal{P}_{\mathrm{fin}}(\mathbb{A})$ and finitely supported powersets $\mathcal{P}_{\mathrm{fs}}(\mathbb{A})$

Relations and functions

Relations and functions are sets too, so:

$$R \subseteq X \times Y$$
 is equivariant iff

$$xRy$$
 implies $(x\cdot\pi)R(y\cdot\pi)$ for all π

$$f:X o Y$$
 is equivariant iff

$$f(x \cdot \pi) = f(x) \cdot \pi$$
 for all π

Examples

For fixed $2, 5 \in \mathbb{A}$:

$$R = \{(5,2)\} \cup \{(2,d) \mid d \neq 5\} \cup \{(d,d)\}$$

R , R^* are supported by $\{2,5\}$

Examples ctd.

Equivariant binary relations on \mathbb{A} :

- empty

- total

- equality

- inequality

No equivariant function from $\binom{\mathbb{A}}{2}$ to \mathbb{A} , but $\{(\{a,b\},a)\mid a,b\in\mathbb{A}\}$

is an equivariant relation.

Only equiv. functions from \mathbb{A}^2 to \mathbb{A} are projections Only equiv. function from \mathbb{A} to \mathbb{A}^2 is the diagonal

Orbits

The orbit of x is the set $\{x \cdot \pi \mid \pi \in \operatorname{Aut}(\mathbb{A})\}$

Every equivariant set is a disjoint union of orbits.

Orbit-finite set if the union is finite.

More generally: the S -orbit of x is $\{x \cdot \pi \mid \pi \in \operatorname{Aut}_S(\mathbb{A})\}$

Fact: An orbit-finite set is S-orbit-finite for every finite S.

Examples

Orbit-finite sets:

$$\mathbb{A} \qquad \mathbb{A}^n \qquad \binom{\mathbb{A}}{n}$$

$$\mathbb{A}^{\triangleleft} = \{\{(a,b,c),(b,c,a),(c,a,b)\} \mid a,b,c \in \mathbb{A}\}$$

- closed under finite union, intersection difference, finite Cartesian product
- but not under (even finite) powerset!

Not orbit-finite:

$$\mathbb{A}^*$$
 $\mathcal{P}_{\mathrm{fin}}(\mathbb{A})$

A automaton with atoms is:

orbit-finite

- a set Q of states
- an alphabet Σ
- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- transition function $\delta: Q \times \Sigma \to Q$

(or relation
$$\delta \subseteq Q \times \Sigma \times Q$$
)

equivariant

Fact: these are expressively equivalent to reg. aut.

A set-builder expression:

$$\{e \mid a_1, \dots, a_n \in \mathbb{A}, \ \phi[a_1, \dots, a_n, b_1, \dots, b_m]\}$$
 expression bound variables
$$\mathsf{FO}(=)\text{-formula}$$

Add also \emptyset and \cup .

Fact: s.-b. e. + interpretation of free vars. as atoms = a hereditarily orbit-finite set with atoms

Fact: Every h. o.-f. set is of this form.

The graph puzzle:

$$G = (V, E)$$

$$V = \{(a, b) \mid a, b \in \mathbb{A}, a \neq b\}$$

$$E = \{\{(a, b), (b, c)\} \mid a, b, c \in \mathbb{A}, a \neq b \neq c\}$$

(encode pairs with standard set-theoretic trickery)

Descriptions like this can be input to algorithms, for example:

Is 3-colorability of orbit-finite graphs decidable?

Sets with atoms are a topos

A lot of mathematics can be done with atoms

set - set with atoms

finite orbit-finite

function — equivariant function

EXCEPT:

- axiom of choice fails, even orbit-finite choice
- powerset does not preserve orbit-finiteness

$\lambda X.(X \text{ with atoms})$

A recipe for adding atoms to everything:

- I. Take your favourite definition.
- 2. Replace all sets (relations, functions etc.) with sets with atoms (equivariant if you wish).
- 3. Replace every "finite" with "orbit-finite".
- 4. Check if your favourite theorems still hold.

(take with a pinch of salt)

Has been applied to: automata, grammars, Turing machines, while-programs, functional programs, CSPs, vector spaces, ...

Here: the μ -calculus.

III μ -Calculus with Atoms

$$p, q, r, \ldots \in \mathbb{P}$$

Formula: φ

p

Model: \mathcal{K}

Semantics:

p holds now

 $p, q, r, \ldots \in \mathbb{P}$

Formula: φ

Model: \mathcal{K}

Semantics:

p holds in some successor

 $p, q, r, \ldots \in \mathbb{P}$

Formula: φ

Model: K

Semantics:

p holds now or in some successor

 $p, q, r, \ldots \in \mathbb{P}$

Formula: φ

 $\mu X.(p \lor \Diamond X)$

Model: \mathcal{K}

Semantics:

p holds in some future

 $p, q, r, \ldots \in \mathbb{P}$

Formula: φ

$$\nu X.(\neg p \wedge \Box X)$$

Model: \mathcal{K}

Semantics:

 $p\,$ never holds in any future

Properties

Model checking:

parity games

Given $k \in \mathcal{K}$ and φ , does $\mathcal{K}, k \models \varphi$?

is decidable.

Satisfiability:

small model property

Given φ , are there $k \in \mathcal{K}$ s.t. $\mathcal{K}, k \models \varphi$?

is decidable.

Useful fragments, e.g. CTL*:

$$\Phi ::= p \mid \Phi \vee \Phi \mid \neg \Phi \mid \exists \phi$$

$$\phi ::= \Phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \mathsf{U} \phi \mid \mathsf{X} \phi$$

state formulas

path formulas

Limitations

Consider an infinite set of basic predicates:

$$\mathbb{P} = \{p_0, p_1, p_2, \ldots\}$$

 p_n : the number n has been input

Now let's define the property:

The current input number is input again in some future

$$\left(\bigvee_{n\in\mathbb{N}}(p_n\wedge\Diamond\mu X.(p_n\vee\Diamond X))\right)$$

Problem: infinite disjunction

Practical motivation:

The system never crashes*

* unless the password generator generates the same password twice...

Models with atoms

Fix an equivariant set \mathbb{P} of basic predicates. (think $\mathbb{P} = \mathbb{A}$)

A model (with atoms): $\mathcal{K} = (K, \rightarrow, \text{pred})$

- a set with atoms K,
- a finitely supported relation $\rightarrow \subseteq K \times K$,
- a finitely supported function pred : $K \to \mathcal{P}_{\mathrm{fs}}\mathbb{P}$,

Example:

- $K = \mathbb{A}^*$,
- $w \to wa$ for $w \in \mathbb{A}^*, a \in \mathbb{A}$
- $\operatorname{pred}(a_1 a_2 \cdots a_n) = \{a_n\}$

Formulas of $\mathcal{L}_{\mu}^{\mathbb{A}}$:

positive formula

$$\phi ::= p \mid X \mid \bigvee \Phi \mid \neg \phi \mid \Diamond \phi \mid \mu X.\phi$$

orbit-finite disjunction

we write e.g.

$$\bigvee_{a\in\mathbb{A}}\phi_a$$
 for $\bigvee\{\phi_a\mid a\in\mathbb{A}\}$

Standard abbreviations:

$$\top := p \vee \neg p$$

$$\bigwedge \Phi := \neg \bigvee \{ \neg \phi \mid \phi \in \Phi \}$$

$$\Box \phi := \neg \Diamond \neg \phi$$

$$\nu X.\phi := \neg \mu X. \neg \phi [\neg X/X]$$

Example: $\bigvee_{a \in \mathbb{A}} (a \land \Diamond \mu X. (a \lor \Diamond X))$

Semantics

For a formula $\,\phi$ and a model $\,\mathcal{K}\,$

(and a valuation $\rho: Variables \to \mathcal{P}_{\mathrm{fs}}K$)

define $\llbracket \phi \rrbracket_{\rho} \subseteq K$ by induction:

- $\bullet \ \llbracket p \rrbracket_{\rho} = \{ x \in K \mid p \in \operatorname{pred}(x) \},$
- $\bullet \ [\![X]\!]_{\rho} = \rho(X),$
- $\bullet \ \llbracket \neg \phi \rrbracket_{\rho} = K \setminus \llbracket \phi \rrbracket_{\rho},$
- $\bullet \ \llbracket \bigvee \Phi \rrbracket_{\rho} = \bigcup \{\llbracket \phi \rrbracket_{\rho} \mid \phi \in \Phi \},\$
- $[\![\Diamond \phi]\!]_{\rho} = \{ k \in K \mid \exists s \in [\![\phi]\!]_{\rho}. \ k \to s \},$
- $\llbracket \mu X. \phi \rrbracket_{\rho} = \operatorname{lfp}(F)$, where $F(A) = \llbracket \phi \rrbracket_{\rho[X \mapsto A]}$.

Examples

-
$$\bigvee_{a \in \mathbb{A}} (a \land \Diamond \mu X.(a \lor \Diamond X))$$

some predicate that holds now, holds again in some future

-
$$\nu X. \left(\left(\diamondsuit \bigvee_{a \in \mathbb{A}} a \right) \wedge \Box X \right)$$

every reachable state has some successor for which some basic predicate holds

$$- \neg (\mu X.(\psi \lor \diamondsuit X))$$

$$\psi = \bigvee_{a \in \mathbb{A}} (a \land \diamondsuit \mu Y.(a \lor \diamondsuit Y))$$

on every path,
no basic predicate holds more
than once

Properties

Fact: Model checking on orbit-finite models is decidable.

(proof: direct computation of semantics, including fixpoints)

Fact: Satisfiability is undecidable.

(proof: direct encoding of Turing machine computations)

CTL* with atoms:

$$\Phi ::= p \mid \bigvee_{a} \Phi_{a} \mid \neg \Phi \mid \exists \phi \qquad \phi ::= \Phi \mid \bigvee_{a} \phi_{a} \mid \neg \phi \mid \phi \mathsf{U} \phi \mid \mathsf{X} \phi$$

Fact: This is not a fragment of $\mathcal{L}_{\mu}^{\mathbb{A}}$.

(and it has undecidable model checking)

The fresh path property

The property:

on some path no basic predicate holds more than once

is not expressible.

Note:

on every path no basic predicate holds more than once

is expressible:
$$\neg(\mu X.(\psi \lor \diamondsuit X))$$

$$\psi = \bigvee_{a \in \mathbb{A}} (a \land \diamondsuit \mu Y.(a \lor \diamondsuit Y))$$

The history-dependent μ -calculus

Extend the syntax:

$$\phi ::= p \mid X \mid \sharp a \mid \bigvee \Phi \mid \neg \phi \mid \Diamond \phi \mid \mu X.\phi$$

Idea: $\sharp a$ says " a has never appeared in any predicate so far"

Semantics evaluated in the context of a history $H \subseteq_{fin} A$:

$$x \in [\![\![\sharp a]\!]^H_{\rho} \iff a \notin H$$

$$x \in [\![\![\Diamond \phi]\!]^H_{\rho} \iff \exists y \in [\![\phi]\!]^{H \cup \mathsf{pred}(x)}_{\rho} \text{ s.t. } x \to y$$

This expresses the fresh path property:

$$\nu X. \left(\bigwedge_{a \in \mathbb{A}} (a \to \sharp a) \land \Diamond X \right)$$

Fact: Model checking on orbit-finite models still decidable.

The Needham-Schroeder public-key protocol:

The system (consisting of Alice, Bob and Eve) is represented as an orbit-finite model, and its security is expressed as a formula.

(which fails)

A recipe for adding atoms to everything:

- I. Take your favourite definition.
- 2. Replace all sets (relations, functions etc.) with sets with atoms (equivariant if you wish).
- 3. Replace every "finite" with "orbit-finite".
- 4. Check if your favourite theorems still hold.

(take with a pinch of salt)

Further reading

Books:

- A. Pitts: Nominal sets. Names and symmetry in Computer Science

Cambridge Univ. Press, 2013

- M. Bojańczyk: Slightly infinite sets to appear, available online:

https://www.mimuw.edu.pl/~bojan/paper/atom-book