Computation Theory over Sets with Atoms

Bartek Klin
University of Oxford

MOVEP Summer School 2022, Aalborg
Puzzle 1: A graph

- **nodes:** ordered pairs of distinct natural numbers
 \[
 \{ (n, m) \mid n \neq m \in \mathbb{N} \}
 \]

- **edges (undirected):**
 \[
 \{ (n, m) \sim (m, k) \mid n \neq k \}
 \]

Is it 3-colorable?
Puzzle II : linear equations

- variables: ordered pairs of distinct natural numbers
 \[
 \{ (nm) \mid n \neq m \in \mathbb{N} \}
 \]

- equations:
 \[
 nm + mk + kn = 0
 \]
 \[
 12 + 21 = 1
 \]

Does it have a solution in \(\mathbb{Z}_2 \)?
General theme

Replace *finite* structures with *infinite, but highly symmetric* ones in:

- automata theory
- computability theory
- modelling / verification
- algorithms

...

- all the way down to *set theory*
Plan

1. Register automata

2. Sets with atoms

3. μ-calculus with atoms
 -- Turing machines with atoms
 -- Constraint satisfaction problems with atoms
 -- Programming with atoms
Register automata
A finite automaton is:
- a set Q of states
- an alphabet Σ
- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- transition function $\delta : Q \times \Sigma \rightarrow Q$

(or relation $\delta \subseteq Q \times \Sigma \times Q$)

Example language: \[\bigcup_{a \in \Sigma} a(\Sigma \setminus a)^* \]
What about infinite alphabets?

Idea 1: keep the definition as it is
- a set Q of states
- an alphabet Σ
- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- transition function $\delta : Q \times \Sigma \rightarrow Q$
 (or relation $\delta \subseteq Q \times \Sigma \times Q$)

Problem: does not recognize $\bigcup_{a \in \Sigma} a(\Sigma \setminus a)^* \bigcup_{a \in \Sigma}$
What about infinite alphabets?

Idea 11: allow infinitely many states

- a set Q of states
- an alphabet \sum (infinite)
- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- transition function $\delta : Q \times \sum \rightarrow Q$
 (or relation $\delta \subseteq Q \times \sum \times Q$)

Problem: every language is recognized
A **register automaton** is:
- a set Q of states
- a set R of registers
- an alphabet A (or $\Sigma \times A$)
- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- configurations: $\Gamma = Q \times (A \cup \{\perp\})^R$
- transition function $\delta : \Gamma \times A \rightarrow \Gamma$

(Or relation $\delta \subseteq \Gamma \times A \times \Gamma$)

that **only checks A for equality**.
Every transition:

\[q \xrightarrow{a} q' \]

is **guarded** by a Boolean combination of conditions:

\[a = r_i \quad a = r'_j \quad r_i = r_j \quad r_i = r'_j \]

(so \(a\) is a “letter variable”, not an actual letter)

- \(r_i\) - old \(i\)-th register
- \(r'_i\) - new \(i\)-th register
This is a deterministic register automaton.
“Only checking for equality”, semantically

Every bijection $\pi : \hat{A} \rightarrow \hat{A}$ acts on configurations:

$$(q, a_1, \ldots, a_k) \cdot \pi = (q, \pi(a_1), \ldots, \pi(a_k))$$

This defines a **group action** of $\text{Aut}(\hat{A})$ on Γ.

A group action of G on a set X:

$$_ \cdot _ : X \times G \rightarrow X$$

such that

$$x \cdot 1 = x$$

$$x \cdot (fg) = (x \cdot f) \cdot g$$
“Only checking for equality”, semantically

Every bijection $\pi : \mathbb{A} \rightarrow \mathbb{A}$ acts on configurations:

$$(q, a_1, \ldots, a_k) \cdot \pi = (q, \pi(a_1), \ldots, \pi(a_k))$$

This defines a group action of $\text{Aut}(\mathbb{A})$ on Γ.

We require δ to be equivariant:

if $(\gamma, a, \gamma') \in \delta$ then $(\gamma \cdot \pi, \pi(a), \gamma' \cdot \pi) \in \delta$

for all π.

Fact: The syntactic and the semantic conditions are equivalent.
It is tempting to write:

A **register automaton** is:
- a set Γ of configurations
- a group action of $\text{Aut}(\mathcal{A})$ on Γ
- an alphabet \mathcal{A} (or $\Sigma \times \mathcal{A}$)
- initial and accepting configurations
- transition function $\delta : \Gamma \times \mathcal{A} \to \Gamma$
 (or relation $\delta \subseteq \Gamma \times \mathcal{A} \times \Gamma$)

that is equivariant.

This is too powerful

(we’ll fix it later)
Questions

Q1: What about other computation models, logics, calculi etc?

Q2: What if we want to check for more than equality?
II
Sets with Atoms
\(X = \text{set, function, relation, automaton, Turing machine, grammar, graph, system of equations...} \)

X with atoms

Infinite but with lots of symmetries

Infinite but symbolically finitely presentable

We can compute on them
Von Neumann hierarchy

A hierarchy of universes:

\[U_0 = \emptyset \]

\[U_{\alpha + 1} = \mathcal{P}U_\alpha \]

\[U_\beta = \bigcup_{\alpha < \beta} U_\alpha \]

defined for every ordinal number.

Elements of sets are other sets, in a well founded way

Every set sits somewhere in this hierarchy.
A - a countable set of atoms

A hierarchy of universes:

\[\mathcal{U}_0 = \emptyset \]

\[\mathcal{U}_{\alpha + 1} = \mathcal{P} \mathcal{U}_\alpha + A \]

\[\mathcal{U}_\beta = \bigcup_{\alpha < \beta} \mathcal{U}_\alpha \]

Elements of sets with atoms are atoms or other sets with atoms, in a well founded way

A canonical group action:

\[_ \cdot _ : \mathcal{U} \times \text{Aut}(A) \to \mathcal{U} \]
Finite support

\[S \subseteq A \text{ supports } X \text{ if } \forall a \in S. \pi(a) = a \implies x \cdot \pi = x \]

A legal set with atoms:
- has a finite support,
- every element has a finite support,
- and so on.

A set is equivariant if it has empty support.
Examples

\[a \in A \quad \text{is supported by} \quad \{a\} \]

\[A \quad \text{is equivariant} \]

\[S \subseteq A \quad \text{is supported by} \quad S \]

\[A \setminus S \quad \text{is supported by} \quad S \]

Fact: \(S \subseteq A \) is fin. supp. iff it is finite or co-finite

\[A^{(2)} = \{(d, e) \mid d, e \in A, d \neq e\} \quad \text{is equivariant} \]

\[\begin{pmatrix} A \end{pmatrix}_2 = \\{\{d, e\} \mid d, e \in A, d \neq e\} \quad \text{is equivariant} \]
Closure properties

Legal sets with atoms are closed under:
- unions, intersections, set differences
- Cartesian products
- taking finitely supported subsets
- quotienting by finitely supported equivalence relations

BUT not under powersets!

\[\mathcal{P}(\mathbb{A}) \] is equivariant but not legal.

They are closed under finite powersets \(\mathcal{P}_{\text{fin}}(\mathbb{A}) \) and finitely supported powersets \(\mathcal{P}_{\text{fs}}(\mathbb{A}) \)
Relations and functions

Relations and functions are sets too, so:

\[R \subseteq X \times Y \] is equivariant iff
\[xRy \quad \text{implies} \quad (x \cdot \pi)R(y \cdot \pi) \quad \text{for all } \pi \]

\[f : X \rightarrow Y \] is equivariant iff
\[f(x \cdot \pi) = f(x) \cdot \pi \quad \text{for all } \pi \]
Examples

For fixed $2, 5 \in A$:

$$R = \{(5, 2)\} \cup \{(2, d) \mid d \neq 5\} \cup \{(d, d)\}$$

R, R^* are supported by $\{2, 5\}$
Equivariant binary relations on \mathbb{A}:

- empty
- total
- equality
- inequality

No equivariant function from \mathbb{A}^2 to \mathbb{A}, but

$$\{(\{a, b\}, a) \mid a, b \in \mathbb{A}\}$$

is an equivariant relation.

Only equiv. functions from \mathbb{A}^2 to \mathbb{A} are projections.

Only equiv. function from \mathbb{A} to \mathbb{A}^2 is the diagonal.
The **orbit** of x is the set $\{x \cdot \pi \mid \pi \in \text{Aut}(A)\}$

Every equivariant set is a disjoint union of orbits.

Orbit-finite set if the union is finite.

More generally: the S-orbit of x is

$\{x \cdot \pi \mid \pi \in \text{Aut}_S(A)\}$

Fact: An orbit-finite set is S-orbit-finite for every finite S.

Examples

Orbit-finite sets:

\[\mathbb{A} \quad \mathbb{A}^n \quad \binom{\mathbb{A}}{n} \]

\[\mathbb{A}^\triangleleft = \{\{(a, b, c), (b, c, a), (c, a, b)\} \mid a, b, c \in \mathbb{A}\} \]

- closed under finite union, intersection difference, finite Cartesian product
- but not under (even finite) powerset!

Not orbit-finite:

\[\mathbb{A}^* \quad \mathcal{P}_{\text{fin}}(\mathbb{A}) \]
Automata with atoms

A automaton with atoms is:

- a set Q of states
- an alphabet \sum
- initial state $q_0 \in Q$, accepting states $F \subseteq Q$
- transition function $\delta : Q \times \sum \rightarrow Q$

(or relation $\delta \subseteq Q \times \sum \times Q$)

Fact: these are expressively equivalent to reg. aut.
Finite presentation

A set-builder expression:

\[\{ e \mid a_1, \ldots, a_n \in A, \ \phi[a_1, \ldots, a_n, b_1, \ldots, b_m] \} \]

expression bound variables free variables FO(=)-formula

Add also \(\emptyset \) and \(\cup \).

Fact: s.-b. e. + interpretation of free vars. as atoms

= a hereditarily orbit-finite set with atoms

Fact: Every h. o.-f. set is of this form.
Examples

The graph puzzle:

\[G = (V, E) \]

\[V = \{ (a, b) \mid a, b \in A, a \neq b \} \]

\[E = \{ \{ (a, b), (b, c) \} \mid a, b, c \in A, a \neq b \neq c \} \]

(encode pairs with standard set-theoretic trickery)

Descriptions like this can be input to algorithms, for example:

Is 3-colorability of orbit-finite graphs decidable?
Set theory with atoms

Sets with atoms are a topos

A lot of mathematics can be done with atoms

- set \rightarrow set with atoms
- finite \rightarrow orbit-finite
- function \rightarrow equivariant function

EXCEPT:
- axiom of choice fails, even orbit-finite choice
- powerset does not preserve orbit-finiteness
A recipe for adding atoms to everything:

1. Take your favourite definition.
2. Replace all sets (relations, functions etc.) with sets with atoms (equivariant if you wish).
3. Replace every “finite” with “orbit-finite”.
4. Check if your favourite theorems still hold.

(take with a pinch of salt)

Has been applied to: automata, grammars, Turing machines, while-programs, functional programs, CSPs, vector spaces, ...

Here: the μ-calculus.
III

μ-Calculus with Atoms
μ-calculus

Formula: \(\varphi \)

Model: \(\mathcal{K} \)

Semantics: \(p \) holds now
\(\mu \)-calculus

Formula: \(\varphi \)

Model: \(\mathcal{K} \)

Semantics: \(p \) holds in some successor

\[p, q, r, \ldots \in P \]
μ-calculus

Formula: φ

Model: κ

Semantics: p holds now or in some successor

$p, q, r, \ldots \in \mathbb{P}$
μ-calculus

Formula: \(\varphi \)

Model: \(\mathcal{K} \)

Semantics: \(p \) holds in some future
μ-calculus

Formula: \(\nu X. (\neg p \land \Box X) \)

Model: \(\mathcal{K} \)

Semantics: \(p \) never holds in any future
Properties

Model checking:

Given \(k \in K \) and \(\varphi \), does \(K, k \models \varphi \)?

is decidable.

Satisfiability:

Given \(\varphi \), are there \(k \in K \) s.t. \(K, k \models \varphi \)?

is decidable.

Useful fragments, e.g. CTL*:

\[
\Phi ::= p \mid \Phi \lor \Phi \mid \neg \Phi \mid \exists \phi \\
\phi ::= \Phi \mid \phi \lor \phi \mid \neg \phi \mid \phi U \phi \mid X \phi
\]
Consider an infinite set of basic predicates:

\[\mathbb{P} = \{p_0, p_1, p_2, \ldots \} \]

\(p_n \): the number \(n \) has been input

Now let's define the property:

The current input number is input again in some future

\[\bigvee_{n \in \mathbb{N}} (p_n \land \lozenge \mu X. (p_n \lor \lozenge X)) \]

Problem: infinite disjunction

Practical motivation:

The system never crashes

unless the password generator generates the same password twice...
Fix an equivariant set \mathcal{P} of basic predicates.

A model (with atoms): $\mathcal{K} = (K, \rightarrow, \text{pred})$

- a set with atoms K,
- a finitely supported relation $\rightarrow \subseteq K \times K$,
- a finitely supported function $\text{pred} : K \rightarrow \mathcal{P}_{fs}\mathcal{P}$,

Example:

- $K = \mathbb{A}^*$,
- $w \rightarrow wa$ for $w \in \mathbb{A}^*$, $a \in \mathbb{A}$
- $\text{pred}(a_1 a_2 \cdots a_n) = \{a_n\}$
Syntax

Formulas of \mathcal{L}^μ_Δ:

$$\phi ::= p \mid X \mid \bigvee \Phi \mid \neg \phi \mid \diamond \phi \mid \mu X.\phi$$

Positive formula

Orbit-finite disjunction

We write e.g.

$$\forall a \in \Delta \phi_a \text{ for } \bigvee \{\phi_a \mid a \in \Delta\}$$

Standard abbreviations:

$$\top ::= p \lor \neg p$$
$$\bot ::= \neg \bigvee \{\neg \phi \mid \phi \in \Phi\}$$
$$\Box \phi ::= \neg \diamond \neg \phi$$
$$\nu X.\phi ::= \neg \mu X.\neg \phi[\neg^X/x]$$

Example:

$$\forall a \in \Delta (a \land \diamond \mu X.(a \lor \diamond X))$$
For a formula ϕ and a model \mathcal{K}

(and a valuation $\rho : Variables \rightarrow \mathcal{P}_{fsK}$)

define $\llbracket \phi \rrbracket_\rho \subseteq K$ by induction:

- $\llbracket p \rrbracket_\rho = \{ x \in K \mid p \in \text{pred}(x) \}$,
- $\llbracket X \rrbracket_\rho = \rho(X)$,
- $\llbracket \neg \phi \rrbracket_\rho = K \setminus \llbracket \phi \rrbracket_\rho$,
- $\llbracket \bigvee \Phi \rrbracket_\rho = \bigcup \{ \llbracket \phi \rrbracket_\rho \mid \phi \in \Phi \}$,
- $\llbracket \Diamond \phi \rrbracket_\rho = \{ k \in K \mid \exists s \in \llbracket \phi \rrbracket_\rho. \ k \rightarrow s \}$,
- $\llbracket \mu X. \phi \rrbracket_\rho = \text{lfp}(F')$, where $F(A) = \llbracket \phi \rrbracket_\rho[X \mapsto A]$.
Examples

- $\bigvee_{a \in A}(a \land \Diamond \mu X.(a \lor \Diamond X))$

 some predicate that holds now, holds again in some future

- $\nu X.((\Diamond \bigvee_{a \in A} a) \land \Box X)$

 every reachable state has some successor for which some basic predicate holds

- $\neg(\mu X.(\psi \lor \Diamond X))$

 on every path, no basic predicate holds more than once

\[\psi = \bigvee_{a \in A}(a \land \Diamond \mu Y.(a \lor \Diamond Y)) \]
Properties

Fact: Model checking on orbit-finite models is decidable.
 (proof: direct computation of semantics, including fixpoints)

Fact: Satisfiability is undecidable.
 (proof: direct encoding of Turing machine computations)

CTL* with atoms:

\[
\Phi ::= p \mid \bigvee a \Phi_a \mid \neg \Phi \mid \exists \phi \\
\phi ::= \Phi \mid \bigvee a \phi_a \mid \neg \phi \mid \phi U \phi \mid X \phi
\]

Fact: This is not a fragment of L^A_μ.
 (and it has undecidable model checking)
The fresh path property

The property:

on some path
no basic predicate holds more
than once

is not expressible.

Note:

on every path
no basic predicate holds more
than once

is expressible:

$$\neg (\mu X. (\psi \lor \diamond X))$$
$$\psi = \bigvee_{a \in A} (a \land \diamond \mu Y. (a \lor \diamond Y))$$
The history-dependent μ-calculus

Extend the syntax:

$$\phi ::= p \mid X \mid \#a \mid \bigvee \Phi \mid \neg \phi \mid \Diamond \phi \mid \mu X. \phi$$

Idea: $\#a$ says “a has never appeared in any predicate so far”

Semantics evaluated in the context of a history $H \subseteq_{\text{fin}} A$:

$$x \in \llbracket \#a \rrbracket^H_{\rho} \iff a \notin H$$

$$x \in \llbracket \Diamond \phi \rrbracket^H_{\rho} \iff \exists y \in \llbracket \phi \rrbracket^{H \cup \text{pred}(x)}_{\rho} \text{ s.t. } x \rightarrow y$$

This expresses the fresh path property:

$$\nu X. (\bigwedge_{a \in A} (a \rightarrow \#a) \land \Diamond X)$$

Fact: Model checking on orbit-finite models still decidable.
The Needham-Schroeder public-key protocol:

The system (consisting of Alice, Bob and Eve) is represented as an orbit-finite model, and its security is expressed as a formula. (which fails)
A recipe for adding atoms to everything:

1. Take your favourite definition.
2. Replace all sets (relations, functions etc.) with sets with atoms (equivariant if you wish).
3. Replace every “finite” with “orbit-finite”.
4. Check if your favourite theorems still hold.
 (take with a pinch of salt)
Further reading

Books:

- A. Pitts: *Nominal sets. Names and symmetry in Computer Science*
 Cambridge Univ. Press, 2013

- M. Bojańczyk: *Slightly infinite sets*
 to appear, available online: