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Transductions: history

Early notion in formal language theory, motivated by coding theory,
compiling, linguistics...

E. F. Moore 1956 “Gedankenexperiments on sequential machines”

D. Scott 1967: “[...] the functions computed by the various machines are more
Important - or at least more basic - than the sets accepted by these devices”

Schutzenberger 1961, Elgot-Mezei 1965, Ginsburg-Rose 1966, Nivat 1968,
Aho-Hopcroft-Ullman 1969, Engelfriet 1972, Eilenberg 1976, Choffrut 1977,...
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transform objects - here: words into words

Example: binary increment (least significant bit left/right)

1]0 0|0

deterministic

Isb left

00 110

11 S0%

T tle

| € | 1

non-deterministic
ISb right



Transducers

one-way finite-state transducers

metamorphosis »  mtmrphss erase vowels

11001 - 00101 increment

two-way finite-state transducers

metamorphosis » sisohpromatem output mirror

metamorphosis >  MmMmOOSS output letters occurring more than once
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deterministic 2-way transducer computing the mirror transduction

(metamorphosis

) metamorphosis » sisohpromatem

metamorphosis



Example: deterministic 2-way transducer computing the transduction:

“subsequence of letters occurring more than once”

a,right | € |
b # a,right | € b # a,left |

O =, right | EO
—(a)

o - right | € C
—» —»(a
/)
_|,1€ﬂ] ’ € a,left ’ €
b # a,left | €

metamorphosis >  MmOooss



Finite state transducers are finite automata with transitions:

one-way
5 H read a from input and output word w
two-way
a,D|u / . .
S — S8 D € {left, right} read a from input, move D and output word w

other features: + deterministic/non-deterministic
+ regular look-ahead, look-around

+ pebbles



Example: “subsequence of letters occurring more than once”

metamorphosis >  MmOoOosS

Can be computed by

+ deterministic one-way transducer with regular look-ahead

+ non-deterministic one-way transducer

but not by any deterministic one-way transducer

Deterministic one-way transducers with regular look-
ahead and single-valued non-deterministic one-way
transducers compute the same word functions.
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MSOT: monadic second-order transductions

[Courcelle, Engelfriet]

- output consists of fixed numlber of copies of input positions

» domain formula: unary MSO formula ~ domg ()

“I-th copy of input position x occurs in the output and is
labeled by symbol a”

« order formula:  binary MSO formula ord; ;(x,y)

“I-th copy of input position x precedes j-th copy of input position
y in the output”



Logic

MSOT: monadic second-order transductions

Example: W — W w
+ 2 Ccoples
+ domain formula: domg 1 (z) = dom, 2(z) = a(x)
+ order formula: Ol‘d1,1($,y) — 0Td2,2($,y) = (z < y)

ord; o(x,y) = true

MSOT = 2DFT [Engelfriet-Hoogeboom 2001]



Logic
NMSOT: non-deterministic monadic second-order transductions

Maps a structure into a (finite) set of structures

Example: Uv —vu relation (not function)

* ONe copy

color input as O* 1*  3Xo 3X; (Partition(Xo, X1) AVz € Xo,y € X1 : x <y)

+ order formula: if both positions in same set, same order;
else positions from X1 before positions of X0

OI‘dl,l(iU,y):(ZEEXl /\yEXO)\/\/(xEX,,;/\yEXi/\a:<y)



Transducers with registers

class membership problems

Equivalence problem

SST: streaming string transducers

[Alur-Cerny 2010]
+ one-way automata +

+ finite number of registers: output can be appended left
or right, registers can be concatenated

a|x=xa,y=ya

Q b|x=uxb y=uyb
_>O__>

out(xy)

doubling

Copyless = no register occurs twice in RHS

SST means copyless Copyful SST = HDTOL



Word functions

class membership problems

Equivalence problem

finitely-valued transductions

origin equivalence

Single-valued transducer: at most one output per input word

single-valued: functions f: A* — B~

2DFT = DSST = NSST =MSOT

regular word functions [Engelfriet-Hoogeboom 2001]
[Alur-Cerny 2010]



Landscape of transducers

1DFT 2DFT = DSST = MSOT

aWmrs Wa Wr WW

subgequential functiong regular functiong

decidable equivalence

Wi S we W

rational functiong

weve  NSST = NMSOT
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+ Single-valuedness can be decided in NLOG for one-way
transducers, and in PSPACE for streaming and two-way
transducers.

+ Single-valued two-way and streaming transducers can be
determinised.

+ Non-deterministic one-way transducers, and deterministic two-
way/streaming transducers are closed under composition.



Properties

Single-valuedness can be decided in NLOG for one-way
transducers, and in PSPACE for streaming and two-way
transducers.

+ INFT: Guess on-the fly 2 runs on same input, together with the output
position where the two runs differ (resp. length difference). The output
position is identified by a counter that maintains the difference of output
lengths. Emptiness of counter automata is in NLOG.

+ 2NFT: Same, but counter automaton is exponential, so complexity is
PSPACE. Lower bound from intersection of finite automata.

+ NSST: More or less the same (PSPACE upper bound, exponential in the
number of registers). No lower bound.



Properties

Single-valued two-way and streaming transducers can be
determinised.

+ NSST: use subset construction and maintain a copy for each register/state
pair. This leads to bounded-copy DSST, which are equivalent to DSST.

[Alur-Filiot-Trivedi 2012]

+ 2NFT: with regular look-around we can follow the minimal accepting run
and do the outputs accordingly. Regular look-around can be implemented
by using reversible automata. See next slides.

A 2DFA is reversible if it is co-deterministic: the current state
+ previous letter determine the previous state.



Properties

Non-deterministic one-way transducers, and deterministic two-
way/streaming transducers are closed under composition.

+ TNFT: direct product
+ For 2DFT/DSST one can use closure under composition of MSO interpretations.

= Direct proof for 2DFT uses reversible 2DFT (see next slides).

A 2DFT is reversible if its automaton is reversible.
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DSST = 2DFT

- a one-way transducer T annotates the input by the accepting run of the DSST

» atwo-way transducer OUT builds the output from the annotated input

» if we can replace T by reversible T’: just compose T’ with OUT



From DSST to 2DFT

DSST = 2DFT

+ aone-way transducer T annotates the input by the accepting run of the DSST

+ 2DFT OUT can build the output from the annotated input (DFS on tree of updates)

alxr=zxa,y=uya Y
Q b|x=uxb y=uyb /l ¢\ f
L p y b b
O— /l ¢\

- out(zy) /16

» if we can replace T by reversible T’: just compose T’ with OUT
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Poly ...

DSST = 2DFT

EXxp

Deterministic one-way transducers can be simulated by reversible
two-way transducers with quadratic blow-up.

[Dartois, Fournier, Jecker, Lhote 2017]

Cor: DSST can be simulated by 2DFT with polynomial blow-up.

reversible = deterministic and co-deterministic



Reversible computations

reversible: deterministic and co-deterministic

DFS of computation tree of co-deterministic one-way automata

[Hopcroft-Ullman’67, Sipser’78] 1
a/ \ a




Reversible computations

reversible: deterministic and co-deterministic

DFS of computation tree of co-deterministic one-way automata

N

reversible




Reversible transducers

reversible: deterministic and co-deterministic

Computation tree of co-deterministic
transducers

When to produce the output?

Double DFS “surrounding” accepting run

1DFT can be made reversible with
quadratic blow-up

[Dartois, Fournier, Jecker, Lhote’17]



Reversible transducers

reversible: deterministic and co-deterministic

2DFT can be made reversible with exponential blow-up

[Dartois, Fournier, Jecker, Lhote’17]

From 2DFT T.

build exp-size, co-deterministic “look-ahead” INFT LA

build exp-size 1DFT R that outputs acc. run of T, using LA

make LA, R reversible, compose and project on output:

R input + look-ahead +
acc. runof T

iInput A input + look-ahead



Reversible transducers

reversible: deterministic and co-deterministic

+ 2DFT can be made reversible

+ reversible 2DFT can be composed easily

Open question: what about DSST?

Composing DSST through (reversible) 2DFT is doubly-exponential.
Any better construction? Lower bound?
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Overview

Word transductions

automata = logic

Rational expressions -

Equivalence problem

One-way (rational) word functions are equivalent to simple
expressions f,gu=(wv)|f+g|f-g|f

(all rational operations are unambiguous)

Example (increment):

00 110
0| 1
111 >0 5

T tle

| € | 1

copy - (0,1) - (1,0)* + (¢,1)(1,0)"



Overview

Word transductions

automata = logic

Regular expressions .

Equivalence problem
f N composition

f®glw) = f(w)g(w) Hadamard product

Regular word functions are equivalent to expressions

frgu=(uv) | f+g| f-g| f |reverse | fog| fOg

frgu=(u,v) | f+g ]| f-g | f° | reverse | duplicate | fog

(all rational operations are unambiguous)

[Gastin’19, Dave, Gastin, Krishna’18, Alur et al.’14]



Overview

Word transductions

automata = logic

Regular expressions

expressions

class membership problems

Equivalence problem

Regular word functions are equivalent to expressions

frgu=(u,v) | f+g | f-g| f |reverse | fog| fOy

Example UL FFUFE . . URFE > UTUS . . . FU2UL . . .

foaa = ((copy (#, €) erase (#,¢€))”
feven = erase ((copy (#, €) erase (#, €))™ copy

fodd ® (#7 #) O, feven



Overview

Word transductions

automata = logic

expressions

2DFT = regular expressions

Equivalence problem

frgu=(u,v) | f+g | f-g| S |reverse | fog| fGOg
From 2DFT to expressions: use algebra [Dave, Gastin, Krishna’18]

Transition monoid of 2DFT associates a word (input factor) with set of triples

(p, D, q) De{—,,~, "}

NI
(P, —,q) 1« (P, ™, Q) i E‘

q q
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2DFT = regular expressions

expressions
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Equivalence problem

frgu=(uwv) | f+g| f-g| f |reverse | fog| fOg

Transition monoid of 2DFT associates a word (input factor) with set of triples

(p, D, q) De{—,+—,~, "}

Simon’s forest factorisation
theorem (unambiguous version)

U

mi1 = €-1M>9

:

I
I
I
I
I
I
I
I
I
|
I
I
I
I
>
I

A




Beyond linear growth

Equivalence problem

Copyful SST: exponential output growth

Copyful DSST and HDTOL are equivalent. out(z)

HDTOL (Lindenmayer systems, '70)
+ input alphabet A, output alphabet B, working alphabet C
+ nitial word ug from C*

= family of morphisms (¢4 )aca and final morphism ¢ : C* — B*

w=ai...a, maps to ¢O¢an0“'o¢a1(uo)



Overview

Word transductions
automata = logic
properties
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Beyond linear growth

Equivalence problem

Polyregular word functions [Bojanczyk’18]
Smallest class of word functions that

+ 1S closed under composition

+ contains the regular functions

+ contains the squaring function

squaring abcd — abcd abcd abcd abcd

Polyregular: polynomial output growth
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Polyregular word functions:

» smallest class of functions containing regular word
functions, closed under composition, and containing
squaring

» two-way deterministic transducers with pebbles (nested)

» for-transducers, polynomial list functions

+ MSO interpretations

[Bojanczyk, Kiefer, Lhote’19] |[Bojanczyk, Daviaud, Krishna’18]



Polynomial growth

class membership problems

Square abcd —» abcd abcd abcd abcd

Example Prefixes abcd —» aab abc abcd

square
abcd —» abcd # » abcd # abcd # abcd # abcd # abcd #
COpy_
> # a #ab #abc # abcd
erase
> a ab abc abcd

2DFT with 2 nested pebbles:

Two nested loops: first pebble moves left-to-right over the input;
second pebble copies content between left border and first pebble



Polynomial growth

class membership problems

Equivalence problem

Squaring abcd —» abcd abcd abcd abed

Example Prefixes abcd —» a ab abc abcd

MSO interpretation: every output position is encoded by two

iINnput positions:

dom,(z,y) = (y < x) A a(y)

ord(w,y,az’,y’) — (aj < CE‘,) Vv (.73 — :E, A Y < y/)



Polyregular functions are strictly weaker than copyful DSST:

A copyful DSST computes a polyregular word function if and only if it
has polynomial output growth. [Douéneau-Tabot et al.’19]

k-layered DSST

= registers partitioned in k layers

+ Updates of registers from Rj use only registers from R1,..., R
+ updates of registers from Rj are copyless on Rj

K-layered DSST compute exactly the polyregular functions with output

rowth O(n*t+!
9 (n"") [Douéneau-Tabot et al.’19]
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Composition-by-substitution [Nguyen, Pradic’21]
f: A" — C* (gC)CECJ ge: A — B”
CbS(f,(ge)e) :  w+— ge, (W) ...gc (w) flw)=-c1...cm

Comparison-free polyregular functions: smallest class containing
regular word functions and closed under composition-by-substitution.

Equivalently: functions computed by comparison-free pebble
transducers. They also form the smallest class containing regular
word functions and cf-squaring:

abcd —» aabcd b abcd ¢ abcd d abcd
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Word transductions

automata = logic

Word functions

expressions

class membership problems

Equivalence problem

v sequential word functions: 1DFT (one-way, deterministic)
rational word functions: 1INFT (one-way, non-deterministic)

<' regular word functions: 2DFT = 2NFT = DSST = NSST = MSOT

[Choffrut 1977]
[Filiot, Gauwin, Reynier, Servais 2013]
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Word transductions

automata = logic

Sequential functions

expressions

class membership problems

Equivalence problem

v sequential word functions: 1DFT
NL

rational word functions: TNFT

()
A single-valued TNFT can be

| be =

a a \ € determinised if and only if it satisfies
\ the twinning property.
—> Q_>
mo/c be(be)” = b(ch)®

Q a | cb

[Choffrut’77, Béal-Carton’02]



sequential: 1DFT, rational: INFT

Sequential functions

A rational word function is sequential iff

+ 1t has bounded variation

+ any two states are twinned

Bounded variation: Lipschitz property w.r.t. prefix distance

A(f(u), f(v) < c-d(u,v) Au,v) = |u| + o] =2+ Ju A
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Given a single-valued 2NFT:

+ [t Is decidable whether an equivalent 1TNFT exists
[Filiot, Gauwin, Reynier, Servais 2013]

» ExpSPACE algorithm [Baschenis, Gauwin, M., Puppis 2017]

+ If “yes”: construction of 2-exp size equivalent TNFT

Lower bounds

+ PSPACE-hard to decide whether equivalent 1NFT exists
+ the size of the TNFT is optimal
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Rational functions

expressions

class membership problems

Equivalence problem

If the given 2NFT is not single-valued: undecidable if it computes a
rational relation. [Baschenis, Gauwin, M., Puppis 2015]

Reduction from PCP f,g: A* — B*

S

Good encodings (wz,w#?) with 2z = f(w) = g(w)

Bad encodings (wz,w#") with

n#lzl  or  z#fw) or  z#g(w)
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Word transductions
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Rational functions

expressions

class membership problems

Equivalence problem

If the given 2NFT is not single-valued: undecidable if it computes a
rational relation.

Bad encodings (wz,w#"™) with

n#lzl  or  z#fw) or  z#g(w)

A 2NFT can generate all bad encodings:

W = wiawz, 2z = 21tz if n=]|z
l then error found t # f(a)
L1 (wn)] Ll




overview

Word transductions

automata = logic

Rational functions

expressions

class membership problems

Equivalence problem

If the given 2NFT is not single-valued: undecidable if it computes a
rational relation.

Bad encodings (wz,w#") with

f PC
f PC

n#lzl  or  z#flw) or  z#g(w)

nas no solution: all pairs are bad encodings, so rational.

nas solution z = f(w) = g(w) consider (w™ 2™, w"#™*)

Pumping turns good encodings into bad ones, so the
relation cannot be rational.
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Given a single-valued 2NFT the existence of an
equivalent 1NFT is decidable in ExpSPACE.

[Baschenis, Gauwin, M., Puppis 2017]

Example: w—ww with weR

« if R=(a4+b)" noequivalent INF
« if R=(ab)” equivalent TNFT exists

A

period 2



Key tool: inversions + word combinatorics

| (
Zo.pr ,Qoor a
The output between the red dots has exponentially-bounded period

Vo V1 Vo U3 U4 = Wo W1 We W3 Wy

Pumping the two loops yields a bounded period for the middle parts.
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automata = logic

properties

Some open problems

class membership problems

Equivalence problem

+ PSPACE lower bound for deciding if a rational function is sequential
- petter lower bound?
+ Better complexity for “2NFT to 1DFT”?
+ Extension from single-valued to finitely-valued transductions®?
+ Canonical DSST? Perhaps easier: minimising the number of
reqgisters?
We can compute the minimal number of registers for concatenation-free (cf)
DSST. Moreover, k-cf-DSST are equivalent to 2k-sweeping 2DFT.

[Baschenis, Gauwin, M., Puppis’16]
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sequential: 1DFT, rational: INFT

Sequential functions

[Choffrut’79]

Myhill-Nerode theorem for 1DF T, so canonical (minimal) transducer

f: A" — B” f(u) = Awf(uw) (largest common prefix)
Define u=rv it
UZdom(r) ¥ and  Vw, flu)7'f(uw) = f(v)7 f(ow)

+ A word function is sequential iff the associated congruence =y
has finite index.

+ The associated congruence defines the canonical (minimal)
transducer computing the function.



Overview

Word transductions

Rational functions

translations between models

1NFT are equivalent to 1DFT with regular look-ahead
[Elgot-Mezei’65]

Example: “subsequence of letters occurring more than once”
w — projp(w) D ={a:|w|, > 1}

A

=/ has infinite index: f(ab™) =€

ab™ =7 ab” ff m =n

Canonical look-ahead LA(f) [Reutenauer-Schitzenberger’91]
u =1 v if A(f(wu), f(wv)) <ec, Yw

Example: u =1, v iff alph(u) = alph(v)



Overview

Word transductions

Rational functions

translations between models

A word function 7 is rational if and only if its canonical Equi
look-ahead LA(f) has finite index and f + LA(f) is
sequential.

|[Reutenauer-Schutzenberger’91]

Example: “subsequence of letters occurring more than once”

w — projp(w) D={a:|w|l, > 1}

f+ LA(f):
(a1,alph(as...a,))(az,alph(as...ay))...(an,0) +— projp(ai...an)

IS sequential

Canonical 1DFT for f + LA(f) = canonical bimachine for f



Overview

Word transductions

automata = logic

First-order transductions

The domain and order formula are FO (instead of MSO).
Example: W — W W FO
= domain dom,,1(x) = dom, 2(z) = a(x)
« order Ofdl)l(x, y) — OrdQ,Q(x7 y) — (CE < y)
ord 2(z,y) = true
Example: w —s qlwl/2 not FO

+ domain dom, 1(z) = a(z) A even(z)

« order ordy1(z,y) = <y
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Word transductions

automata = logic
ge I a translations between models
expressions

algebra

Equivalence problem

Long line of research on algebra for word languages:

*,

» algebra offers machine-independent characterizations,
canonical objects (minimization), decision procedures for
subclasses

= prominent example: decide whether a regular language is

star-free
star-free = FO logic [McNaughton, Papert’71]
star-free = aperiodic [Schitzenberger'69]

Can we decide if a regular transduction is a FO transduction?



Overview

Word transductions
automata = logic

translations between models

First-order transductions (FOT) =~

A word function fis a first-order transduction if and only if the
canonical look-ahead LA(f) is aperiodic and the canonical 1DFT
for f + LA(f) has an aperiodic transition monoid.

It IS decidable If a rational word function f is a first-order transduction.

[Filiot, Gauwin,Lhote’10]

No decision procedure for regular word functions so far, but:

FOT = aperiodic 2DFT = aperiodic DSST

[Carton, Dartois’15], [Filiot, Krishna, Trivedi’15]



Open problem

Can we decide whether a regular word function is FOT ?

Issue here: come up with a canonical 2DFT/DSST. Not even

clear for sweeping transducers.
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Equivalence problem

Given two transducers, do they compute the same relation”

The equivalence problem for non-deterministic one-way transducers

(1N

) IS undecidable. [Fischer-Rosenberg, Griffiths’68]

Reduction from PCP f,g: A* — B* loarra’77]

(uz,c™) € Ry it m # | f(u)] or = # f(u)

Ry isrational: if m = |f(u)| guess u1aus 21122 with

L+ f(a) m = | ()] + |tz

RyUR, =(AUB)* xc" iff PCP has no solution



Equivalence problem

Given two transducers, do they compute the same relation?

Equivalence of non-deterministic one-way transducers (1NFT) is

undecidable.
[Fischer-Rosenberg, Griffiths'68]

decidable ' undecidable
2DF DSST copyful DSST [ 1NF
PSPACE-c PSPACE decidable
[Gurari’82] [Alur-Cerny’10] [Filiot-Reynier’17]

[Benedikt et al.’17]



Equivalence problem

Single-valued transducer: at most one output per input word

To check equivalence, single-valuedness is as good as determinism!

single-valued i relational

PTime decidable PSPACE-c

[Blattner-Head'79)] | | [Alur-Deshmukh’11] ¢
[Culik-Karhumaki’87]

PSPACE-c: equivalence of 2NFA
is in PSPACE [Vardi’89]



Equivalence problem
Single-valued transducer: at most one output per input word

Single-valuedness not yet the end for equivalence problem:

Equivalence of k-valued 1DFT (and 2DFT) is decidable.

[Culik-Karhuméki’86]
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Word transductions

automata = logic

Finitely valued .

class membership problems

Equivalence problem

finitely valued transducers

origin equivalence

K-valued transducer: for every input at most k different outputs

Equivalence of k-valued one-way transducers is decidable.

|Culik-Karhumaki’806]

Proof based on the Ehrenfeucht’s conjecture:

Every infinite system of word equations has a finite, equivalent subsystem

word equation xy =2zt solution X=bc y=z=Db t=cb

[oroved 1986 by Albert & Lawrence, and Guba]



Overview

Word transductions

automata = logic

Equivalence of k-valued 1NFT
IS decidable.

class membership problems

Equivalence problem

\/O@ -

al cb

finitely valued transducers

origin equivalence

[Culik-Karhumaki’806]

1. show that there exists some m such that for any k-valued transducers
with at most n states, their equivalence needs to be tested only on
words up to length m

2. show that m can be computed effectively

step 1: Ehrenfeucht’s conjecture step 2: Makanin’s algorithm for word equations



Overview

Word transductions

automata = logic

a|x1 a

properties
expressions

class membership problems
X5

Equivalence problem
finitely valued transducers
origin equivalence

a | x2 a | x4 k-valued, one-way implies

bounded outdegree

Given two transducers, replace output words by variables

x1 x3 x5... xb =x2 x4 x5 ... x5 on input M2

N—_—— N——

™m ™m
- For every input word: group outputs of each transducer in at most k groups

+ System of equations expresses equalities between output groups

A Vs e A VS

WE* groups weEXSm groups



Overview

Word transductions

automata = logic

Equivalence of k-valued 1NFT
IS decidable.

class membership problems

Equivalence problem

. finitely valued transducers
/\ \/ S eq U IVal ent tO /\ \/ S origin equivalence

wEA* groups wEAS™M groups

Find m effectively: /\ \/ S = /\ \/ S

wEAS™T groups weEASM+1 groups

“Left quotient” Ty (w) =T (aw) a €Y
(same number of states and outdegree, so same m)

T, =, T it T, T5 equivalent over ySm

Show inductively Th=n1To it Th =, 15 for all N > m using T,



Overview

Word transductions

Equivalence of k-valued NSST is decidable.

properties
expressions

IM., Puppis 2019]

class membership problems

Equivalence problem

finitely valued transducers

origin equivalence

a X=X Dbc a X=Ccb X

-0 -0

a | x=c x a | x=xc

First issue: bounded outdegree no longer obvious: e.g. x = (bc)Aj x (be)Mn-j}

Normalization: invariant about periods of register and gaps

Example (left): c bcbc bcbcbc = final output

~~

X




Overview

Word transductions

Equivalence of k-valued NSST is decidable.

properties
expressions

class membership problems

Equivalence problem

finitely valued transducers

Several normalization Steps: origin equivalence
+ make registers non-erasing, i o 7
non-permuting ) / ) K "
fixi > _x1_ T3 g: 1~ _T1_T3__ h: x1 — _x1 __
o > r2 = g — _ T3 __
r3 — r3 — _ T2 xr3 —

a | x=xbc

+ associlate invariants with states: information albout
boundedness or periodicity of register content, resp. O
(future) gap content .0

a | x=c x

left gap bounded (C)

right gap period bc cbcbcbcbcbcecbec

X: period bc
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Word transductions
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Equivalence of k-valued NSST is decidable. |
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finitely valued transducers

origin equivalence

Let T be k-valued NSST.

+ Based on = invariants, two transitions (between the same pair of
states) are either always output-equivalent, or never.

+ We can show that the outdegree of each state bounded by a
constant depending on k and the number of states and registers.

Consequence: for fixed alphabets/number of registers/states, the set
of k-valued NSST is finite.



Overview

Word transductions

Equivalence of k-valued NSST is decidable.

properties
expressions

class membership problems

Equivalence problem

finitely valued transducers

origin equivalence

Consequence: for fixed alphabets/number of registers/states and
outdegree, the set C of k-valued NSST is finite.

Next step: show that for any T as above and T, (w) = T (uw)
input word u, the “u-quotient” belongs to C

(Naive construction preserves the number of states/registers, but not the outdegree.)
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Word transductions

Equivalence of k-valued NSST is decidable.

properties
expressions

class membership problems

Equivalence problem

finitely valued transducers

origin equivalence

Ehrenfeucht: there is some N such that the set of words of length at
most N is a test set for all k-valued NSST in C.

Ty =n 15 equivalence over words of length at most N

How do we compute N? iInductively

Assume that we found N suchthat T} =n To  iff 17 =n11 15

for all transducers from C

How? E.g. using an algorithm for solving word equations (Makanin)
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Word transductions

automata = logic

Equivalence of k-valued NSST is decidable.

expressions

class membership problems

Equivalence problem

Ta (UJ ) p— T ( alw) ) finitely valued transducers

origin equivalence

17 =n 15 Iff 14 =N4+1 15

1y =, 15 <— T7=n5 15 for all r > N and Tl,TQGX

17 =41 15 iff 114 =r12,4 for all a

ifft 114,=r-1124 for all a



Open questions

Decomposition theorem for finitely-valued NSST*?

Every k-valued one-way transducer can be decomposed into k
single-valued one-way transducers.

[Weber’'96, Sakarovitch, de Souza’08]

If similar statement holds for NSST then:

NSST = 2NFT holds in finite-valued case (conjectured).
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copyful transducers
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: : : copyful: registers can occur
Equivalence of copyful DSST is decidable. multiple times in updates

[Filiot-Reynier’'17]  [Benedikt et al.”17]

+ A. A.Markov (~ 1948): encoding words by integers

Every 2x2 matrix with non-negative integer entries and determinant 1 can be
encoded in a unique way as product of matrices:

11 1 0
w=(o) =)

+ Encode binary string by (value, 2/length), e.g. 011 encoded by (3,8)

Concatenation u = (u,uz),v = (v1,v2)

(u1,u2) o (v1,v9) = (Urv2 + V1, UgV2)



Equivalence of copyful DSST is decidable. '°

class membership problems

Equivalence problem

finitely valued transducers
copyful transducers

origin equivalence

+ (Copyful) DSST turn into word-to-integer transducers with registers and
polynomial operations on registers:

polynomial automata [Benedikt et al.”17]

+ Equivalence of copyful DSST reduces to zeroness problem for
polynomial automata:

Build the product of (encodings of) DSST T1, 12;
output = difference of output registers
11 = T2 iff the output is constantly O
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class membership problems

Equivalence problem

finitely valued transducers

copyful transducers

Zeroness of polynomial automata is decidable.
[Benedikt et al.’17], [Seidl,-Maneth-Kemper’15]

[Bojanczyk, SIGLOG’'19]

Two semi-algorithms: the first one searches input with non-zero output.

The other semi-algorithm searches a proof for the polynomial automaton
being constantly zero using Hilbert’s Basis Theorem.

A

polynomial invariants



Overview

Word transductions

automata = logic

properties
expressions

class membership problems

Equivalence problem

finitely valued transducers
copyful transducers

origin equivalence



Origin equivalence

“Tag” each output symbol with the input position where it was generated:

output alphabetis I' x N
[Bojanczyk’14]

Origin information brings word transducers closer to automata:

+ Regular word functions with origin information enjoy a Myhill-Nerode
congruence: machine-independent characterisation

+ First-order definable regular word functions have an effective
characterisation

+ LLess combinatorics, more decidability



Origin equivalence Bojarczyk'14]

Regular word functions with origin information enjoy a Mynhill-Nerode
congruence: machine-independent characterisation

derivatives: left-right, left, right

f(w) — wlw for(v) —rol®lour fo(v) — By

fo(v) = vt

A word function with origin semantics is regular iff it has finitely many left
and finitely many right derivatives.

First-order definable regular word functions have an effective characterisation
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Word transductions
automata = logic

properties

Or1 o 1N equiv alence

Equivalence problem

finitely valued transducers

“Tag” each output symbol with its origin

scopyful transducersy

origin equivalence

Transducers T, T’ are origin-equivalent if they are equivalent in the
origin semantics.

O €E—
O €E—Q
O €E—
O €E—Q
O €e—Q

not origin-equivalent

Origin-equivalence of 2NFT is decidable: PSPACE-complete.

[Bose, M., Penelle, Puppis’18]
Idea: origin-equivalence for 2NFT reduces to “runs of same shape”.



Origin-equivalence of DSST in PSPACE.

a | x1=x1c,

X2 = X2, X3 = X3 1
_____ . 0 a | x2=x2c,
X3 = X3, x1 = x1
2 out(0) = x3 x1 x2
out(1) = x1 x2 x3
a | x3=x3c, out(2) = x2 x3 X1

x1 =x1, x2 = x2

Overview
Word transductions
automata = logic
properties

expressions

class membership problems

Equivalence problem

finitely valued transducers
scopyful transducersy

origin equivalence

a | yl=y2c,
y2 =y3,y3 =yl

out(s) = y1 y2y3

ldea: origin-equivalence for DSST through backward propagation of

constraints (= simple word equations)



Origin-equivalence of DSST in PSPACE.

a | x1=x1c,
2

X2 = X2,X3=/X3(
————— > 1 a | x2=x2¢, -----»(8 a | yl=y2c
X3 = X3, X1 = x1 v2 = y3. y3 = y1
\
a | X3 = X3 C, 3 out(1) = x3 x1 x2 out(s) = y1 y2y3
X1 =x1, x2 = x2 out(2) = x1 x2 x3
out(3) = x2 x3 x1
out(1) = out(s) x3 x1 x2=y1y2y3
(1,8) <— (3,9) X3 c X1 x2 =y2 cy3y X3 =Vy2, x1 X2 =y3 y
(3,8) <— (2,8 X3=Vy3, x1 x2c=yly2cC X1 x2 =y1y2
2,) <— (1,s) x3=y1, x1¢c x2=y2cCcy3 X1 =y2, x2 =y3



Origin-equivalence of DSST in PSPACE.

a | x1=x1c,
2

X2 = X2,X3=/X3(
----- > a | x2=x2c, S a | yl=y2c
X3 = X3, X1 = x1 v2 = y3.y3 = y1
v
a | x3=x3c, 3 out(1) = x3 x1 x2 out(s) =y1 y2y3
X1 =x1, X2 = x2 out(2) = x1 x2 x3
out(3) = x2 x3 x1
out(1) = out(s) x3x1x2=y1y2y3
Invariants: at state 1 X1 =y2, x2 =y3, X3 =y
at state 2 X1 =vy1, x2 =y2, X3 =Vy3

at state 3 X1 =vy3, X2 =y1, X3 =y2



Overview

Word transductions

automata = logic

Origin-equivalence of copyful e
DSST is decidable.
scopyful transducersy
Copyful: registers can occur multiple times in RHS origin equivalence
Algorithm:

= puild product of SST T7,T5

+ compute backwards constraints of the form

a=0p, acR], B€R;

Termination: if no inconsistency detected during propagation

Is based on Ehrenfeucht’s conjecture + Makanin



Overview

Word transductions

automata = logic

Origin-equivalence of copyful e
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Equivalence problem
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scopyful transducersy

origin equivalence

Alternatively: reduction to (classical) equivalence of copyful DSST [Filiot]

» additional register m, additional output symbol #
* update x :=ayxbreplacedbyx:amyxbm

* m:=m# at each transition



Unary output alphabet

class membership problems

finitely valued transducers

Origin-equivalence over arbitrary output alphabet is polynomially
reducible to origin-equivalence over unary alphabet.

For classical equivalence unary alphabets are presumably easier:

Equivalence of copyful DSST is in Ackermann (Benedikt et al.’17)

Equivalence of copyful DSST with unary output alphabet is in PTIME
(Karr’s algorithm, cf. MullerOIm-Seidl’04)



Open questions

+ Gomplexity of equivalence of deterministic SST?
+ Same for origin-equivalence of DSST?

+ Decidability of equivalence for pebble transducers? Or even
comparison-free pebble transducers?



|Filiot-Jecker-Loding-Winter’22]

Overview
Word transductions

Resynchronizations o

expressions
class membership problems

Equivalence problem

Classical equivalence of 2DFT or DSST is difficult because

scopyful transducersy

same outputs can be generated in very different manners.

x| x=ax, y=ay

x | x = aza
"2 n (O

—>O—>

out(xby) o=

delay between runs with some output

0 1
a---a a a
~—— el — ~——
: s cuts (period 1)
a e o o a b a o o o a
~—— ~——
k k
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[Filiot-decker-Loding-Winter’'22]

scopyful transducersy

origin equivalence

delay between runs with same output

0 1 0
1T a---a a---a
k k
a...a ba...a
12 ~—— ~——
k k

cuts (period 1)
Fix a period p and a delay d.

Two runs with same output have delay d w.r.t. period p if the delay (= length
difference of output) measured at cuts is at most d.



Resynchronizations

class membership problems

finitely valued transducers

[Filiot-decker-Loding-Winter’'22] il e

origin equivalence

Fix a period p and a delay d.

A letter-to-letter INFT R can be constructed such that R takes a
run r1 of SST T1 and outputs runs r2 of SST T2 with delay(r1,r2) at
most d.

Given single-valued NSST T1, T2 one can compute p and d such
that T1 = T2 iff T1 = R(T2).

Given single-valued NSST T there exist p and d such that:

T1 = T2 for some T2 with k registers iff T1 = R(T2) for some T2
with K registers
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